1
|
Wyles SP, Faustino RS, Li X, Terzic A, Nelson TJ. Systems-based technologies in profiling the stem cell molecular framework for cardioregenerative medicine. Stem Cell Rev Rep 2016; 11:501-10. [PMID: 25218144 DOI: 10.1007/s12015-014-9557-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated interactions between epigenetic, transcriptional, and translational mechanisms. The science of incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) data in a specific biological sample is known as systems biology. Integrating systems biology in progression with stem cell biologics can contribute to our knowledge of mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage specification. This review provides a brief summarization of OMICS-based strategies including transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline molecular processes involved in heart development. Additionally, current efforts in cardioregeneration based on the "one-size-fits-all" principle limit the potential of individualized therapy in regenerative medicine. Here, we summarize recent studies that introduced systems biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for disease recurrence and patient-specific therapeutic response.
Collapse
Affiliation(s)
- Saranya P Wyles
- Center for Clinical and Translational Sciences, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
2
|
Banovic M, Loncar Z, Behfar A, Vanderheyden M, Beleslin B, Zeiher A, Metra M, Terzic A, Bartunek J. Endpoints in stem cell trials in ischemic heart failure. Stem Cell Res Ther 2015; 6:159. [PMID: 26319401 PMCID: PMC4552990 DOI: 10.1186/s13287-015-0143-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Despite multimodal regimens and diverse treatment options alleviating disease symptoms, morbidity and mortality associated with advanced ischemic heart failure remain high. Recently, technological innovation has led to the development of regenerative therapeutic interventions aimed at halting or reversing the vicious cycle of heart failure progression. Driven by the unmet patient need and fueled by encouraging experimental studies, stem cell-based clinical trials have been launched over the past decade. Collectively, these trials have enrolled several thousand patients and demonstrated the clinical feasibility and safety of cell-based interventions. However, the totality of evidence supporting their efficacy in ischemic heart failure remains limited. Experience from the early randomized stem cell clinical trials underscores the key points in trial design ranging from adequate hypothesis formulation to selection of the optimal patient population, cell type and delivery route. Importantly, to translate the unprecedented promise of regenerative biotherapies into clinical benefit, it is crucial to ensure the appropriate choice of endpoints along the regulatory path. Accordingly, we here provide considerations relevant to the choice of endpoints for regenerative clinical trials in the ischemic heart failure setting.
Collapse
Affiliation(s)
- Marko Banovic
- Cardiology Department, University Clinical Center of Serbia, Belgrade Medical School, 11000, Belgrade, Serbia.
| | - Zlatibor Loncar
- Cardiology Department, University Clinical Center of Serbia, Belgrade Medical School, 11000, Belgrade, Serbia.
| | | | | | - Branko Beleslin
- Cardiology Department, University Clinical Center of Serbia, Belgrade Medical School, 11000, Belgrade, Serbia.
| | - Andreas Zeiher
- Cardiology Department, Goethe University of Frankfurt, 60590, Frankfurt, Germany.
| | - Marco Metra
- Cardiology Department, University of Brescia, 25123, Brescia, Italy.
| | | | - Jozef Bartunek
- Cardiovascular Center, OLV Hospital, 9300, Aalst, Belgium.
| |
Collapse
|
3
|
Crespo-Diaz R, Yamada S, Bartunek J, Perez-Terzic C, de Waele P, Mauën S, Terzic A, Behfar A. Cardiopoietic index predicts heart repair fitness of patient-derived stem cells. Biomark Med 2015; 9:639-49. [PMID: 26014833 DOI: 10.2217/bmm.15.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stem cell therapy shows promise for regeneration in heart disease, yet interpatient variability challenges implementation into practice. AIM To establish a biomarker profile, predictive of reparative potential in patient-derived progenitors, human mesenchymal stem cells were isolated from patients undergoing coronary artery bypass grafting. MATERIALS & METHODS Stem cell delivery postinfarction translated into divergent benefit, distinguishing reparative from nonreparative populations. RESULTS While the nonreparative subtype was characterized by low expression of cardiac transcription factors, reparative human mesenchymal stem cells demonstrated high expression of cardiac transcription factors. CONCLUSION This index of factors (cardiopoietic index) was found sensitive and specific in predicting impact of stem cell benefit on left ventricular function. The cardiopoietic index thus offers a tool to screen stem cell fitness for heart repair prior to intervention.
Collapse
Affiliation(s)
- Ruben Crespo-Diaz
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA
| | - Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA
| | | | - Carmen Perez-Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA.,Department of Physical Medicine & Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology & Experimental Therapeutics, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Terzic A, Nelson TJ. Regenerative medicine primer. Mayo Clin Proc 2013; 88:766-75. [PMID: 23809322 DOI: 10.1016/j.mayocp.2013.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 01/14/2023]
Abstract
The pandemic of chronic diseases, compounded by the scarcity of usable donor organs, mandates radical innovation to address the growing unmet needs of individuals and populations. Beyond life-extending measures that are often the last available option, regenerative strategies offer transformative solutions in treating degenerative conditions. By leveraging newfound knowledge of the intimate processes fundamental to organogenesis and healing, the emerging regenerative armamentarium aims to boost the aptitude of human tissues for self-renewal. Regenerative technologies strive to promote, augment, and reestablish native repair processes, restituting organ structure and function. Multimodal regenerative approaches incorporate transplant of healthy tissues into damaged environments, prompt the body to enact a regenerative response in damaged tissues, and use tissue engineering to manufacture new tissue. Stem cells and their products have a unique aptitude to form specialized tissues and promote repair signaling, providing active ingredients of regenerative regimens. Concomitantly, advances in materials science and biotechnology have unlocked additional prospects for growing tissue grafts and engineering organs. Translation of regenerative principles into practice is feasible and safe in the clinical setting. Regenerative medicine and surgery are, thus, poised to transit from proof-of-principle studies toward clinical validation and, ultimately, standardization, paving the way for next-generation individualized management algorithms.
Collapse
Affiliation(s)
- Andre Terzic
- Mayo Clinic Center for Regenerative Medicine, Mayo Clinic, Rochester, MN; Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN; Department of Medical Genetics, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
5
|
Ragni E, Viganò M, Rebulla P, Giordano R, Lazzari L. What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. J Cell Mol Med 2013; 17:168-80. [PMID: 23305553 PMCID: PMC3823147 DOI: 10.1111/j.1582-4934.2012.01660.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/10/2012] [Indexed: 12/18/2022] Open
Abstract
In the last years, mesenchymal stem cells (MSCs) have been identified as an attractive cell population in regenerative medicine. In view of future therapeutic applications, the study of specific differentiation-related gene expression is a pivotal prerequisite to define the most appropriate MSC source for clinical translation. In this context, it is crucial to use stable housekeeping genes (HGs) for normalization of qRT-PCR to obtain validated and comparable results. By our knowledge, an exhaustive validation study of HGs comparing MSCs from different sources under various differentiation conditions is still missing. In this pivotal study, we compared the expression levels of 12 genes (ACTB, Β2M, EF1alpha, GAPDH, GUSB, PPIA, RPL13A, RPLP0, TBP, UBC, YWHAZ and 18S rRNA) to assess their suitability as HGs in MSCs during adipogenic, osteogenic and chondrogenic differentiation. We demonstrated that many of the most popular HGs including 18S rRNA, B2M and ACTB were inadequate for normalization, whereas TBP/YWHAZ/GUSB were frequently identified among the best performers. Moreover, we showed the dramatic effects of suboptimal HGs choice on the quantification of cell differentiation markers, thus interfering with a reliable comparison of the lineage potential properties among various MSCs. Thus, in the emerging field of regenerative medicine, the identification of the most appropriate MSC source and cell line is so crucial for the treatment of patients that being inaccurate in the first step of the stem cell characterization can bring important consequences for the patients and for the promising potential of stem cell therapy.
Collapse
Affiliation(s)
- Enrico Ragni
- Cell Factory Franco Calori, Center for Transfusion Medicine, Cellular Therapy and Cryobiology, Department of Regenerative Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | |
Collapse
|
6
|
Terzic A, Folmes CD, Martinez-Fernandez A, Behfar A. Regenerative medicine: on the vanguard of health care. Mayo Clin Proc 2011; 86:600-2. [PMID: 21719616 PMCID: PMC3127554 DOI: 10.4065/mcp.2011.0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Madeddu P. Stem cell therapy for cardiovascular regeneration: the beginning or the end of all hearts' hopes. Pharmacol Ther 2011; 129:1-2. [DOI: 10.1016/j.pharmthera.2010.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/16/2022]
|