1
|
Tao L, Song P, Shao L, Gao H, Ji K, Ren Y, Wang F, Wang M. miR-129-2-3p inhibits colon cancer cell proliferation by down-regulating the expression of BZW1. Arab J Gastroenterol 2024; 25:42-50. [PMID: 38220481 DOI: 10.1016/j.ajg.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/16/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND STUDY AIMS MicroRNA (miRNA) is involved in diverse biological and physiological processes of tumors. Dysregulation of miRNA will induce a series of human diseases. miR-129-2-3p has vital effects in the pathogenesis of various tumors. However, the regulatory function of miR-129-2-3p in colon cancer remains to be clarified. This study investigated the role of miR-129-2-3p targeting BZW1 in proliferation, apoptosis, migration, and invasion of colon cancer. PATIENTS AND METHODS Here, RT-qPCR was applied to measure the miR-129-2-3p levels in colon cancer tissues. The predicted targets of miR-129-2-3p were identified by bioinformatics and verified using luciferase reporter assay. The effects of miR-129-2-3p on colon cancer were detected by CCK-8, colony formation, transwell chamber test, wound healing, and flow cytometry assays. Finally, the influence of miR-129-2-3p on tumor growth was studied. Nude mice were xenografted with transfected Lovo cells by subcutaneous injection of 5 × 105 cells in 100 µl. HE staining and TUNEL were used to assess metastasis ability. RESULTS miR-129-2-3p level in colon cancer tissue was significantly reduced. Furthermore, it was verified that BZW1 was a target of miR-129-2-3p, and its expression in colon cancer cells was inhibited by miR-129-2-3p. Additionally, miR-129-2-3p inhibited colon cancer cell proliferation, colony formation, mobility ability and tumor growth, and promoted cell apoptosis by targeting BZW1. miR-129-2-3p overexpression in tumor xenografts in vivo decreased BZW1 expression, and suppressed tumor growth. CONCLUSION Collectively, these findings indicated that miR-129-2-3p exerts a suppressive role in colon cancer cells by directly targeting BZW1, and may have significant therapeutic implications for patients with colon cancer.
Collapse
Affiliation(s)
- Liang Tao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Peng Song
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Lihua Shao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Hengfei Gao
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Kangkang Ji
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yan Ren
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| | - Meng Wang
- Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China.
| |
Collapse
|
2
|
Sun B, Yue SG. Expression of long noncoding RNA MEG3 and microRNA-302b-3p in colon cancer: Correlation with clinical stage and value in predicing prognosis after surgical treatment. Shijie Huaren Xiaohua Zazhi 2023; 31:981-988. [DOI: 10.11569/wcjd.v31.i23.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND More and more long non-coding RNAs and microRNAs have been found to have significant changes in expression levels during the occurrence and development of tumors, which can affect the expression of tumor suppressor genes or oncogenes and play an important role in the proliferation and metastasis of cancer cells.
AIM To investigate the correlation between the expression of long non-coding RNA maternal imprinted gene 3 (LncRNA MEG3) and microRNA (miR)-302b-3p in colon cancer and clinical stage and analyze their value in predicting the prognosis after surgical treatment.
METHODS A total of 97 patients with colon cancer treated at Jinhua Hospital of TCM from January 2017 to March 2022 were selected to compare the expression of LncRNA MEG3 and miR-302b-3p in different tissues, analyze the correlation between the expression of LncRNA MEG3 and miR-302b-3p and clinical pathological characteristics, compare the recurrence in patients with different LncRNA MEG3 and miR-302b-3p expression, analyze the factors affecting the recurrence of colon cancer after surgery, and analyze the impact of the interaction between LncRNA MEG3 and miR-302b-3p on the recurrence of colon cancer. The predictive value of LncRNA MEG3 and miR-302b-3p expression for the recurrence of colon cancer after surgery was evaluated.
RESULTS The expression of LncRNA MEG3 and miR-302b-3p in colon cancer tissues was lower than that in tumor-adjacent tissues (P < 0.05). The expression of LncRNA MEG3 and miR-302b-3p in colon cancer tissues was not correlated with sex, age, or tumor size (P > 0.05), but was correlated with tumor differentiation, clinical stage, and lymph node metastasis (P < 0.05). In colon cancer tissues, the recurrence rate in patients with high LncRNA MEG3 and miR-302b-3p expression was lower than that of patients with lower LncRNA MEG3 and miR-302b-3p expression (P < 0.05). Tumor differentiation degree, clinical stage, and lymph node metastasis were all identified to be risk factors for colon cancer recurrence, and LncRNA MEG3 and miR-302b-3p expression were protective factors for colon cancer recurrence (P < 0.05). The interaction analysis showed that the synergistic effect of simultaneous exposure to LncRNA MEG3 and miR-302b-3p was 15.888 times greater than the effect of exposure to either LncRNA MEG3 or miR-302b-3p alone, and when simultaneously exposing to both, 56.98% of the risk of colon cancer recurrence was attributed to their synergistic effect. The area under the curve (AUC) (95% confidence interval [CI]) of LncRNA MEG3 and miR-302b-3p in predicting the prognosis of colon cancer patients was 0.720 (0.620-0.807) and 0.767 (0.670-0.847), respectively, and that of the combined prediction was 0.892 (0.813-0.946), with a sensitivity and specificity of 92.31% and 83.33%, respectively, which were significantly higher than those of either LncRNA MEG3 or miR-302b-3p alone.
CONCLUSION The down-regulated expression of LncRNA MEG3 and miR-302b-3p in colon cancer is related to clinical stage. Clinical detection of their expression can be used to determine the malignant degree of tumor and predict the prognosis of surgical treatment, thus providing reference for adjustment of clinical treatment plan.
Collapse
Affiliation(s)
- Bing Sun
- Second Department of Surgery, Jinhua Hospital of Traditional Chinese Medicine, Jinhua 321017, Zhejiang Province, China
| | - Shi-Guo Yue
- Second Department of Surgery, Jinhua Hospital of Traditional Chinese Medicine, Jinhua 321017, Zhejiang Province, China
| |
Collapse
|
3
|
Ding Y, Zhao H, Niu W, Zhang J, Zheng X, Liu Y, Zhang J, Li C, Yu B. M2 Macrophage-Derived Extracellular Vesicles Containing MicroRNA-501-3p Promote Colon Cancer Progression Through the SETD7/DNMT1/SOCS3 Axis. Dis Colon Rectum 2023; 66:e1234-e1245. [PMID: 37695661 DOI: 10.1097/dcr.0000000000002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Macrophage-derived extracellular vesicles with microRNAs can cause and develop colon cancer. OBJECTIVE To investigate M2 macrophage-derived extracellular vesicles and colon cancer. DESIGN A prospective and experimental study of M2 macrophage-derived extracellular vesicles in colon cancer. SETTING This study was completed at the Fourth Hospital of Hebei Medical University. PATIENTS Patients with colon cancer who had undergone surgical resection. MAIN OUTCOME MEASURES Suppressor of cytokine signaling 3, miR-501-3p, SET domain containing 7, and DNA methyltransferase 1 were measured in colon cancer samples. Multiple experiments determined suppressor of cytokine signaling 3, miR-501-3p, SET domain containing 7, and DNA methyltransferase 1 binding affinity. M2 macrophages were cultivated from M0 macrophages isolated from peripheral blood mononuclear cells of a healthy donor and polarized to produce extracellular vesicles. Gain- or loss-of-function tests using colon cancer cells and M2 macrophage-derived extracellular vesicles revealed cell biological processes. Finally, animal models were created to test how miR-501-3p from M2-extracellular vesicles affects tumor growth via the SET domain containing 7/DNA methyltransferase 1/suppressor of cytokine signaling 3. RESULTS Colon cancer increased miR-501-3p and DNA methyltransferase 1 and downregulated suppressor of cytokine signaling 3 and SET domain containing 7. miR-151-3p inhibited SET domain containing 7, upregulating DNA methyltransferase 1. Increased promoter methylation by DNA methyltransferase 1 decreased suppressor of cytokine signaling 3 expression. M2-EVs with miR-501-3p regulated the SET domain containing 7/DNA methyltransferase 1/suppressor of cytokine signaling 3 axis to induce apoptosis and colon cancer cell growth, invasion, and migration. M2-EV-delivered miR-501-3p also regulated the SET domain containing 7/DNA methyltransferase 1/suppressor of cytokine signaling 3 axis to promote tumor growth in animals. LIMITATIONS Further research is needed in clinical application of M2 macrophage-derived extracellular vesicles containing miR-501-3p as a biomarker of colon cancer. CONCLUSIONS M2 macrophage-derived extracellular vesicles with miR-501-3p regulate the SET domain containing 7/DNA methyltransferase 1/suppressor of cytokine signaling 3 axis to promote colon cancer. LAS VESCULAS EXTRACELULARES DERIVADAS DE MACRFAGOS M QUE CONTIENEN MICROARNP PROMUEVEN LA PROGRESIN DEL CNCER DE COLON A TRAVS DEL EJE SETD/DNMT/SOCS ANTECEDENTES:Las vesículas extracelulares derivadas de macrófagos con microARN pueden causar y desarrollar cáncer de colon.OBJETIVO:Investigamos las vesículas extracelulares derivadas de macrófagos M2 y el cáncer de colon.DISEÑO:Un estudio prospectivo y experimental de vesículas extracelulares derivadas de macrófagos M2 en el cáncer de colon.ESCENARIO:Este estudio se completó en el Cuarto Hospital de la Universidad Médica de Hebei.PACIENTES:Pacientes con cáncer de colon sometidos a resección quirúrgica.PRINCIPALES MEDIDAS DE RESULTADO:Se midieron el supresor de la señalización de citoquinas 3, miR-501-3p, SETD7 y la ADN metiltransferasa 1 en muestras de cáncer de colon. Múltiples experimentos determinaron la afinidad de unión del supresor de la señalización de citoquinas 3, de miR-501-3p, de SETD7 y de la ADN metiltransferasa 1. Los macrófagos M2 se cultivaron a partir de macrófagos M0 aislados de células mononucleares de sangre periférica de donantes sanos y se polarizaron para producir vesículas extracelulares. Las pruebas de ganancia o pérdida de función utilizando células de cáncer de colon y vesículas extracelulares derivadas de macrófagos M2 revelaron procesos biológicos celulares. Finalmente, se crearon modelos animales para probar cómo miR-501-3p de vesículas extracelulares M2 afecta el crecimiento tumoral a través del SETD7/ADN metiltransferasa 1/supresor de la señalización de citocinas 3.RESULTADOS:El cáncer de colon aumentó el miR-501-3p y la ADN metiltransferasa 1 y reguló negativamente el supresor de la señalización de citoquinas 3 y SETD7. miR-151-3p inhibió SETD7, regulando positivamente la ADN metiltransferasa 1. El aumento de la metilación del promotor por la ADN metiltransferasa 1 produjo disminución de la expresión del supresor de señalización de citocinas 3. Los M2-EV con miR-501-3p regularon el eje SETD7/ADN metiltransferasa 1/supresor de la señalización de citocinas 3 para inducir apoptosis y crecimiento, invasión y migración de células de cáncer de colon. El miR-501-3p administrado por M2-EV también reguló el eje SETD7/ADN metiltransferasa 1/supresor de la señalización de citocinas 3 para promover el crecimiento tumoral en animales.LIMITACIONES:Se necesita más investigación en la aplicación clínica de vesículas extracelulares derivadas de macrófagos M2 que contienen miR-501-3p como biomarcador de cáncer de colon.CONCLUSIONES:Las vesículas extracelulares derivadas de macrófagos M2 con miR-501-3p regulan el eje SETD7/ADN metiltransferasa 1/supresor de la señalización de citocinas 3 para promover el cáncer de colon. (Traducción-Dr. Felipe Bellolio ).
Collapse
Affiliation(s)
- Yuanyi Ding
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Huijin Zhao
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wenbo Niu
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Juan Zhang
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaochuan Zheng
- The Second Department of General Surgery, Fengning Manchu Autonomous County Hospital, Chengde, People's Republic of China
| | - Youqiang Liu
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jianfeng Zhang
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Chenhui Li
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Bin Yu
- The Second Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
4
|
Zhai S, Li X, Wu Y, Shi X, Ji B, Qiu C. Identifying potential microRNA biomarkers for colon cancer and colorectal cancer through bound nuclear norm regularization. Front Genet 2022; 13:980437. [PMID: 36313468 PMCID: PMC9614659 DOI: 10.3389/fgene.2022.980437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Colon cancer and colorectal cancer are two common cancer-related deaths worldwide. Identification of potential biomarkers for the two cancers can help us to evaluate their initiation, progression and therapeutic response. In this study, we propose a new microRNA-disease association identification method, BNNRMDA, to discover potential microRNA biomarkers for the two cancers. BNNRMDA better combines disease semantic similarity and Gaussian Association Profile Kernel (GAPK) similarity, microRNA function similarity and GAPK similarity, and the bound nuclear norm regularization model. Compared to other five classical microRNA-disease association identification methods (MIDPE, MIDP, RLSMDA, GRNMF, AND LPLNS), BNNRMDA obtains the highest AUC of 0.9071, demonstrating its strong microRNA-disease association identification performance. BNNRMDA is applied to discover possible microRNA biomarkers for colon cancer and colorectal cancer. The results show that all 73 known microRNAs associated with colon cancer in the HMDD database have the highest association scores with colon cancer and are ranked as top 73. Among 137 known microRNAs associated with colorectal cancer in the HMDD database, 129 microRNAs have the highest association scores with colorectal cancer and are ranked as top 129. In addition, we predict that hsa-miR-103a could be a potential biomarker of colon cancer and hsa-mir-193b and hsa-mir-7days could be potential biomarkers of colorectal cancer.
Collapse
Affiliation(s)
- Shengyong Zhai
- Department of General Surgery, Weifang People’s Hospital, Shandong, China
| | - Xiaoling Li
- The Second Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, China,Heilongjiang Second Cancer Hospital, Harbin, China
| | - Yan Wu
- Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoli Shi
- Geneis Beijing Co., Ltd., Beijing, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
| | - Chun Qiu
- Department of Oncology, Hainan General Hospital, Haikou, China,*Correspondence: Chun Qiu,
| |
Collapse
|
5
|
Huang Z, Yang M. Molecular Network of Colorectal Cancer and Current Therapeutic Options. Front Oncol 2022; 12:852927. [PMID: 35463300 PMCID: PMC9018988 DOI: 10.3389/fonc.2022.852927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related mortalities globally, results from the accumulation of multiple genetic and epigenetic alterations in the normal colonic and rectum epithelium, leading to the progression from colorectal adenomas to invasive carcinomas. Almost half of CRC patients will develop metastases in the course of the disease and most patients with metastatic CRC are incurable. Particularly, the 5-year survival rate of patients with stage 4 CRC at diagnosis is less than 10%. Although genetic understanding of these CRC tumors and paired metastases has led to major advances in elucidating early driver genes responsible for carcinogenesis and metastasis, the pathophysiological contribution of transcriptional and epigenetic aberrations in this malignancy which influence many central signaling pathways have attracted attention recently. Therefore, treatments that could affect several different molecular pathways may have pivotal implications for their efficacy. In this review, we summarize our current knowledge on the molecular network of CRC, including cellular signaling pathways, CRC microenvironment modulation, epigenetic changes, and CRC biomarkers for diagnosis and predictive/prognostic use. We also provide an overview of opportunities for the treatment and prevention strategies in this field.
Collapse
Affiliation(s)
- Zhe Huang
- The Department of 11 General Surgery, Minimally Invasive Colorectal Hernia Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Yang
- The Department of 3Oncology, Gastrointestinal Cancer Unit, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingli Yang,
| |
Collapse
|
6
|
Chen CC, Chang PY, Chang YS, You JF, Chan EC, Chen JS, Tsai WS, Huang YL, Fan CW, Hsu HC, Chiang JM. MicroRNA-based signature for diagnosis and prognosis of colorectal cancer using residuum of fecal immunochemical test. Biomed J 2022; 46:144-153. [PMID: 35074584 PMCID: PMC10104956 DOI: 10.1016/j.bj.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is still among the most lethal and prevalent malignancies in the world. Despite continuous efforts, the diagnosis and prognosis of CRC have never been satisfying, especially the non-invasive assays. METHODS Our study comprised three independent cohorts of 835 qualified stool samples. From 46 literature-identified miRNA candidates, four miRNA ratios were selected and developed into a miRNA-based signature after applied to the training and test sets. The clinical performances of this signature were further evaluated in the prospective cohorts. RESULTS Four miRNA ratios with significant alterations and the highest discriminating power between the CRC and control groups in the training set were successfully validated in the test set. In the training dataset, combining these four miRNA ratios using a logistic regression model improved the area under the curve value to 0.821 and obtained a sensitivity of 73.6% and specificity of 78.9%. This miRNA signature showed consistent performances in the other two sample cohorts, with the highest sensitivity of 85.7% in the prospective cohort. Additionally, the higher miRNA signature was associated with worse disease-free survival (hazard ratio = 2.27) and overall survival (hazard ratio = 1.83) of CRC patients. For fecal immunochemical test (FIT)-positive populations, the positive predictive value for CRC detection in miRNA-positive subjects was 3.43-fold higher in the prospective cohort, compared to FIT alone. CONCLUSION This stool miRNA signature is highly associated with poor outcome of CRC and can be added to FIT tests to help identify the most at-risk group to receive prompt colonoscopy examination.
Collapse
|