1
|
Modi C, Sinha M, Thakkar V, Rana H, Chavda D. Choc-Tadalafil Fusion: Unlocking Solubility and Taste Harmony with β-CD-Infused Medicated Chocolate. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:110-119. [PMID: 38500286 DOI: 10.2174/0126673878280254240312053406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The primary limitations of tadalafil in treating erectile dysfunction are its low solubility and unpleasant bitter taste, which ultimately result in inadequate patient adherence. The present study aimed to develop and characterize a medicated chocolate formulation containing Tadalafil and β-CD (solubility enhancer) employing the concept of Design of Experiment (DoE) using chocolate as a user-friendly excipient. METHODS An inclusion complex was formulated by incorporating the drug into β-CD using the kneading method for solubility improvement and also as a taste masker for Tadalafil. The ratio of drug: β-CD inclusion complex was selected based on a phase solubility study. The inclusion complex was molded into a chocolate base and optimized using the DoE approach. Further, drug excipient interaction was evaluated by DSC and FTIR study. RESULTS Phase solubility study suggested a 1:1 ratio of Tadalafil: β-CD for better solubility. DSC spectra suggested the conversion of crystalline structure into an amorphous state which indicates improvement of the drug solubility. DSC and FTIR studies revealed that there was no significant interaction between drug and excipients. Next, %CDR (cumulative drug release) at 30 min revealed the immediate effect of Tadalafil from chocolate formulation and free drug analysis (an unbound drug with β-CD) proved reduced bitterness of the drug in the complex. Additionally, the medicated chocolate was found to be stable at room temperature as per stability study. CONCLUSION β-CD was found to be a promising multifunctional excipient as a solubility enhancement carrier and taste masker for bitter-tasting drugs.
Collapse
Affiliation(s)
- Chetna Modi
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Manobika Sinha
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Vaishali Thakkar
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Hardik Rana
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| | - Dipika Chavda
- Department of Pharmaceutics, Anand Pharmacy College, Anand, Gujarat, India
| |
Collapse
|
2
|
Sohn JS, Choi JS. Febuxostat solubilization and stabilization approach using solid dispersion method: Synergistic effect of dicalcium phosphate dehydrate and chitosan. Int J Biol Macromol 2023; 253:127266. [PMID: 37802445 DOI: 10.1016/j.ijbiomac.2023.127266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Drug solubilization studies are continuously being conducted. Febuxostat (FBX) has a low solubility in water. This study aims to develop a stable FBX-solid dispersion (SD) formulation using a solvent evaporation method. The solubilization strategy of FBX is to develope an optimal FBX-SD formulation by selecting a solubilizer and carrier through the screening method. The final selected solubilizer, macrogol 15 hydroxystearate and polyoxyl 15 hydroxystearate (Kolliphor® HS-15), is widely used in the pharmaceutical industry as a nonionic solubilizing and emulsifying agent and has low toxicity. Especially when commonly used in developing lipophilic drug formulations, it dissolves well in water and ethyl alcohol. The optimal composition ratio of the formulation (SD4) was FBX:HS-15®:granular dicalcium phosphate dehydrate (DCP-D): A synthetic magnesium aluminometasilicate (Neusilin®UFL2):chitosan = 1:3:3:1:1 (w/w) and showed 3.0-, 2.3-, and 1.1-fold higher dissolution (%) of FBX compared to that of the Feburic tab® in pH 1.2 media, distilled water (DW), and pH 6.8 buffer, respectively. Also, in vitro release and in vitro permeability in SD4 formulation showed higher than that of Feburic tab®. Based on its stability over 6 months, it was confirmed that chitosan acted as a stabilizer. Moreover, due to weak intermolecular interactions, FBX in the SD4 formulation was considered to exist in a mixed state of amorphous and crystalline FBX. In conclusion, the improved dissolution (%) and stability of FBX in SD4 formulation were secured through the synergistic effect of excipients.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
3
|
Kraev KI, Geneva-Popova MG, Hristov BK, Uchikov PA, Popova-Belova SD, Kraeva MI, Basheva-Kraeva YM, Stoyanova NS, Mitkova-Hristova VT. Celebrating Versatility: Febuxostat's Multifaceted Therapeutic Application. Life (Basel) 2023; 13:2199. [PMID: 38004339 PMCID: PMC10672185 DOI: 10.3390/life13112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Febuxostat, initially developed as a xanthine oxidase inhibitor to address hyperuricemia in gout patients, has evolved into a versatile therapeutic agent with multifaceted applications. This review provides a comprehensive overview of febuxostat's mechanism of action, its effectiveness in gout management, its cardiovascular safety profile, renal and hepatic effects, musculoskeletal applications, safety considerations, and emerging research prospects. Febuxostat's primary mechanism involves selective inhibition of xanthine oxidase, resulting in reduced uric acid production. Its pharmacokinetics require personalized dosing strategies based on individual characteristics. In gout management, febuxostat offers a compelling alternative, effectively lowering uric acid levels, relieving symptoms, and supporting long-term control, especially for patients intolerant to allopurinol. Recent studies have demonstrated its cardiovascular safety, and it exhibits minimal hepatotoxicity, making it suitable for those with liver comorbidities. Febuxostat's potential nephroprotective effects and kidney stone prevention properties are noteworthy, particularly for gout patients with renal concerns. Beyond gout, its anti-inflammatory properties hint at applications in musculoskeletal conditions and a broader spectrum of clinical contexts, including metabolic syndrome. Emerging research explores febuxostat's roles in cardiovascular health, neurological disorders, rheumatoid arthritis, and cancer therapy, driven by its anti-inflammatory and antioxidative properties. Future directions include personalized medicine, combination therapies, mechanistic insights, and ongoing long-term safety monitoring, collectively illuminating the promising landscape of febuxostat's multifaceted therapeutic potential.
Collapse
Affiliation(s)
- Krasimir Iliev Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | | | - Bozhidar Krasimirov Hristov
- Second Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 6000 Plovdiv, Bulgaria
| | - Petar Angelov Uchikov
- Department of Special Surgery, Medical Faculty, Medical University of Plovdiv, 6000 Plovdiv, Bulgaria
| | | | - Maria Ilieva Kraeva
- Department of Otorhynolaryngology, Medical Faculty, Medical University of Plovdiv, 6000 Plovdiv, Bulgaria
| | - Yordanka Mincheva Basheva-Kraeva
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria
| | - Nina Staneva Stoyanova
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria
| | - Vesela Todorova Mitkova-Hristova
- Department of Ophthalmology, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- University Eye Clinic, University Hospital, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Sohn JS, Choi JS. Development and evaluation of febuxostat solid dispersion through screening method. Saudi Pharm J 2023; 31:101724. [PMID: 37559865 PMCID: PMC10406859 DOI: 10.1016/j.jsps.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Febuxostat (Febux) is a BCS II drug and has a very low solubility. In order to overcome this shortcoming, the purpose of study is to increase the in vitro dissolution (%) and drug release (%) of Febux by using a screening method. The Febux-SD formulation was prepared by screening solubilizers, pH agents, and carriers using with a solvent evaporation method. The novel Febux SD formulation was successfully developed. The dissolution (%) of Febux of optimal formulation (SD3) was higher than that of Feburic® tab in pH 1.2, distilled water (DW), and pH 6.8 buffer by 6.3-, 2.6-, and 1.1-fold, respectively, at 60 min. The in vitro drug release (%) and permeability (μg/cm2) of SD3 formulation were improved compared to those of Feburic® tab in the pH shifting method and PBS (7.4), respectively. The SD3 formulation was well maintained the stability for 6 months, and that of physicochemical properties were altered. In conclusion, the Febux solubilization study with meglumine was first attempted and successfully performed. Through the improved dissolution (%) of Febux, high bioavailability of SD3 formulation is expected in animal and human studies.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea
| |
Collapse
|
5
|
Jin C, Wu F, Hong Y, Shen L, Lin X, Zhao L, Feng Y. Updates on applications of low-viscosity grade Hydroxypropyl methylcellulose in coprocessing for improvement of physical properties of pharmaceutical powders. Carbohydr Polym 2023; 311:120731. [PMID: 37028868 DOI: 10.1016/j.carbpol.2023.120731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Hydroxypropyl methylcellulose (HPMC) is an important polymeric excipient. Its versatility in terms of molecular weights and viscosity grades is the basis for its wide and successful application in the pharmaceutical industry. Low viscosity grades of HPMC (like E3 and E5) have been used as physical modifiers for pharmaceutical powders in recent years due to their unique physicochemical and biological properties (e.g., low surface tension, high Tg, strong hydrogen bonding ability, etc.). Such modification is the co-processing of HPMC with a drug/excipient to create composite particles (CPs) for the purpose of providing synergistic effects of functional improvement as well as of masking undesirable properties of the powder (e.g., flowability, compressibility, compactibility, solubility, stability, etc.). Therefore, given its irreplaceability and tremendous opportunities for future developments, this review summarized and updated studies on improving the functional properties of drugs and/or excipients by forming CPs with low-viscosity HPMC, analyzed and exploited the improvement mechanisms (e.g., improved surface properties, increased polarity, hydrogen bonding, etc.) for the further development of novel co-processed pharmaceutical powders containing HPMC. It also provides an outlook on the future applications of HPMC, aiming to provide a reference on the crucial role of HPMC in various areas for interested readers.
Collapse
|
6
|
Saharan VA. Progresses and Challenges of Fast Dissolving/Disintegrating Dosage Forms in Manufacturing, Formulation Screening, Preclinical Testing and Drug Delivery. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2020; 14:3-4. [PMID: 33054701 DOI: 10.2174/187221131401200609144457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Vikas Anand Saharan
- Department of Pharmaceutics School of Pharmaceutical Sciences & Technology Sardar Bhagwan Singh University, Balawala Dehradun 248001, Uttarakhand, India
| |
Collapse
|