Abstract
BACKGROUND
Interindividual variability in cytochrome P450 (CYP)-mediated xenobiotic metabolism is extensive. CYP metabolism requires two electrons, which can be donated by NADPH cytochrome P450 oxidoreductase (CYPOR) and/or cytochrome b5 (b5). Although substantial number of studies have reported on the function and effect of b5 in CYP-mediated catalysis, its mode of action is still not fully understood.
OBJECTIVE
The aim of this work was to examine the effect of b5 on the activities of eight natural-occurring variants of human CYP1A2, namely, T83M, S212C, S298R, G299S, I314V, I386F, C406Y, and R456H.
MATERIALS AND METHODS
An approach, as used in our former study was applied, coexpressing these polymorphic CYP1A2 variants separately with CYPOR and b5 in the bacterial cell model BTC-CYP. For each variant, 16 different activity parameters were measured, using eight different substrates. This heterogeneous data set was merged with the one of our former study (i.e. without b5) and a multivariate analysis was carried out.
RESULTS
This analysis indicated that b5 seems to have the ability to affect CYP1A2 variants to behave more like the wild-type variant. This was especially the case for variant I386F, for which the presence of b5 was crucial to show activity. Variants T83M and C406Y showed considerably different activity-profiles when in the presence of b5. Furthermore, our data seem to implicate CYP1A2 residue G299 in its interaction with CYPOR and/or b5.
CONCLUSION
Results indicate the ability of b5 to affect CYP1A2 variants to behave more like the wild-type variant, attenuating detrimental effects of structural mutations of these variants, seemingly through extensive allosteric effects.
Collapse