Mistry S, Roy S, Jyoti Maitra N, Roy R, Datta S, Chanda A, Sarkar S. Safety and efficacy of additive and subtractive surface modification of Ti6Al4V endosseous implant in goat bone.
J Mech Behav Biomed Mater 2015;
57:69-87. [PMID:
26705934 DOI:
10.1016/j.jmbbm.2015.11.019]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/22/2015] [Accepted: 11/25/2015] [Indexed: 01/17/2023]
Abstract
Growing interest of endosseous implant research is focused on surface modification to achieve early and strong osseointegration. The present study compared the behaviour of hydroxyapatite coated, zinc doped hydroxyapatite coated and hydrothermally treated titanium (Ti6Al4V) with machined Ti6Al4V implants (control) on osseointegration. The surface characterization and bacterial affinity test for implants were performed. Forty eight (48) cylinders (4 types in each animal) were placed in the humerus bone of 12 black Bengal goats. Bone-implant interface was examined with histological, radiological parameters and scanning electron microscopy on 42nd, 90th, and 180th day post-implantation. Surface roughness alterations of bone-detached implants with time were analyzed by non-contact profilometer. Push-out test (90th day) was performed to assess the strength of bony integration of implants. The coated implants revealed direct and early bone-implant contact but high bacterial affinity and coating resorption/cracks. Low bacterial affinity and strongest osseointegration was observed with hydrothermally treated implants. Poor bacterial affinity and delayed but strong fixation were evident with control implant. Based on the results of laboratory and animal experiments, we conclude that the hydrothermal modification of titanium implant is the more suitable way to achieve safe and effective osseointegration than the other three implant types for endosseous application.
Collapse