Kommerein N, Weigel AJ, Stiesch M, Doll K. Plant-based oral care product exhibits antibacterial effects on different stages of oral multispecies biofilm development in vitro.
BMC Oral Health 2021;
21:170. [PMID:
33794846 PMCID:
PMC8015205 DOI:
10.1186/s12903-021-01504-4]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
Background
Excessive biofilm formation on surfaces in the oral cavity is amongst the main reasons for severe infection development like periodontitis and peri-implantitis. Mechanical biofilm removal as well as the use of adjuvant antiseptics supports the prevention of pathogenic biofilm formation. Recently, the antibacterial effect of the oral care product REPHA-OS®, based on medicinal plant extracts and essential oils, has been demonstrated on oral pathogens grown on agar plates. In the present study, the effectiveness of the product on medical relevant oral biofilm development should be demonstrated for the first time.
Methods
An established in vitro oral multispecies biofilm, composed of Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis, was used to analyze the antibacterial effect of different REPHA-OS® concentrations on planktonic bacteria, biofilm formation and mature biofilms. It was quantified using metabolic activity assays and live/dead fluorescence staining combined with three-dimensional confocal laser-scanning microscopy. Additionally, effects on species distribution inside the biofilm were assessed by means of quantitative real-time PCR.
Results
REPHA-OS® showed statistically significant antimicrobial effects on all stages of biofilm development: a minimal inhibitory concentration of 5% could be detected for both, for planktonic bacteria and for biofilm formation. Interestingly, only a slightly higher concentration of 10% was necessary to completely kill all bacteria in mature biofilms also. In contrast, an influence on the biofilm matrix or the species distribution could not be observed. The effect could be attributed to the herbal ingredients, not to the contained ethanol.
Conclusion
The strong antibacterial effect of REPHA-OS® on different stages of oral biofilm development strengthens its application as an alternative adjuvant in oral care therapies.
Supplementary Information
The online version contains supplementary material available at 10.1186/s12903-021-01504-4.
Collapse