1
|
Kumaran NAM, Karthik M, Kumar V, Jebasingh T, Munavar MH. Two new mutations in dnaJ suppress DNA damage hypersensitivity and capsule overproduction phenotypes of Δlon mutant of Escherichia coli by modulating the expression of clpYQ (hslUV) and rcsA genes. Gene 2020; 726:144135. [DOI: 10.1016/j.gene.2019.144135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
|
2
|
Kumaran N, Munavar MH. Suppression of Δlonphenotypes in Escherichia coliby N-terminal DnaK peptides. J Basic Microbiol 2019; 59:302-313. [DOI: 10.1002/jobm.201800469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nagarajan Kumaran
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics; Madurai Kamaraj University; Palkalai Nagar, Madurai Tamil Nadu India
| | - M. Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics; Madurai Kamaraj University; Palkalai Nagar, Madurai Tamil Nadu India
| |
Collapse
|
3
|
Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli. Microbiol Res 2018; 220:21-31. [PMID: 30744816 DOI: 10.1016/j.micres.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease, in which ClpQ is the peptidase subunit and ClpY is the ATPase and unfoldase. ClpY functions to recognize protein substrates, and denature and translocate the unfolded polypeptides into the proteolytic site of ClpQ for degradation. However, it is not clear how the natural substrates are recognized by the ClpYQ protease and the mechanism by which the substrates are selected, unfolded and translocated by ClpY into the interior site of ClpQ hexamers. Both Lon and ClpYQ proteases can degrade SulA, a cell division inhibitor, in bacterial cells. In this study, using yeast two-hybrid and in vivo degradation analyses, we first demonstrated that the C-terminal internal hydrophobic region (139th∼149th aa) of SulA is necessary for binding and degradation by ClpYQ. A conserved region, GFIMRP, between 142th and 147th residues of SulA, were identified among various Gram-negative bacteria. By using MBP-SulA(F143Y) (phenylalanine substituted with tyrosine) as a substrate, our results showed that this conserved residue of SulA is necessary for recognition and degradation by ClpYQ. Supporting these data, MBP-SulA(F143Y), MBP-SulA(F143N) (phenylalanine substituted with asparagine) led to a longer half-life with ClpYQ protease in vivo. In contrast, MBP-SulA(F143D) and MBP-SulA(F143S) both have shorter half-lives. Therefore, in the E. coli ClpYQ protease complex, ClpY recognizes the C-terminal region of SulA, and F143 of SulA plays an important role for the recognition and degradation by ClpYQ protease.
Collapse
|
4
|
Chang CY, Hu HT, Tsai CH, Wu WF. The degradation of RcsA by ClpYQ(HslUV) protease in Escherichia coli. Microbiol Res 2016; 184:42-50. [PMID: 26856452 DOI: 10.1016/j.micres.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 01/30/2023]
Abstract
In Escherichia coli, RcsA, a positive activator for transcription of cps (capsular polysaccharide synthesis) genes, is degraded by the Lon protease. In lon mutant, the accumulation of RcsA leads to overexpression of capsular polysaccharide. In a previous study, overproduction of ClpYQ(HslUV) protease represses the expression of cpsB∷lacZ, but there has been no direct observation demonstrating that ClpYQ degrades RcsA. By means of a MBP-RcsA fusion protein, we showed that RcsA activated cpsB∷lacZ expression and could be rapidly degraded by Lon protease in SG22622 (lon(+)). Subsequently, the comparative half-life experiments performed in the bacterial strains SG22623 (lon) and AC3112 (lon clpY clpQ) indicated that the RcsA turnover rate in AC3112 was relatively slow and RcsA was stable at 30°C or 41°C. In addition, ClpY could interact with RscA in an in vitro pull-down assay, and the more rapid degradation of RcsA was observed in the presence of ClpYQ protease at 41°C. Thus, we conclude that RcsA is indeed proteolized by ClpYQ protease.
Collapse
Affiliation(s)
- Chun-Yang Chang
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Ting Hu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsuan Tsai
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
San Martin-Uriz P, Mirete S, Alcolea PJ, Gomez MJ, Amils R, Gonzalez-Pastor JE. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening. PLoS One 2014; 9:e95041. [PMID: 24740277 PMCID: PMC3989265 DOI: 10.1371/journal.pone.0095041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/23/2014] [Indexed: 11/18/2022] Open
Abstract
Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY). This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.
Collapse
Affiliation(s)
- Patxi San Martin-Uriz
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| | - Salvador Mirete
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| | - Pedro J. Alcolea
- Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel J. Gomez
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| | - Ricardo Amils
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose E. Gonzalez-Pastor
- Centro de Astrobiología (INTA-CSIC), Instituto Nacional de Técnica Aeroespacial, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
6
|
Lery LMS, Goulart CL, Figueiredo FR, Verdoorn KS, Einicker-Lamas M, Gomes FM, Machado EA, Bisch PM, von Kruger WMA. A comparative proteomic analysis of Vibrio cholerae O1 wild-type cells versus a phoB mutant showed that the PhoB/PhoR system is required for full growth and rpoS expression under inorganic phosphate abundance. J Proteomics 2013; 86:1-15. [PMID: 23665147 DOI: 10.1016/j.jprot.2013.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. In order to disclose other roles of this system, a proteomic analysis of Vibrio cholerae 569BSR and its phoB/phoR mutant under high Pi levels was performed. Most of the proteins downregulated by the mutant have roles in energy production and conversion and in amino acid transport and metabolism. In contrast, the phoB/phoR mutant upregulated genes mainly involved in adaptation to atypical conditions, indicating that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways. This might be a strategy to overcome the lack of RpoS, whose expression in the stationary phase cells of V. cholerae seems to be controlled by PhoB/PhoR. Moreover, compared to the wild-type strain the phoB/phoR mutant presented a reduced cell density at stationary phase of culture in Pi abundance, lower resistance to acid shock, but higher tolerance to thermal and osmotic stresses. Together our findings show, for the first time, the requirement of PhoB/PhoR for full growth under high Pi level and for the accumulation of RpoS, indicating that PhoB/PhoR is a fundamental system for the biology of V. cholerae. BIOLOGICAL SIGNIFICANCE Certain V. cholerae strains are pathogenic to humans, causing cholera, an acute dehydrating diarrhoeal disease endemic in Southern Asia, parts of Africa and Latin America, where it has been responsible for significant mortality and economical damage. Its ability to grow within distinct niches is dependent on gene expression regulation. PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. However, Pho regulon genes also play roles in virulence, motility and biofilm formation, among others. In this paper we report that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways, in Pi abundance. Moreover, we showed, for the first time, that the interrelationship between PhoB-RpoS-(p)ppGpp-poly(P) in V. cholerae, is somewhat diverse from the model of inter-regulation between those systems, described in Escherichia coli. The V. cholerae dependence on PhoB/PhoR for the RpoS mediated stress response and cellular growth under Pi abundance, suggests that this system's roles are broader than previously thought.
Collapse
Affiliation(s)
- Letícia M S Lery
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates. J Bacteriol 2011; 193:5465-76. [PMID: 21803990 DOI: 10.1128/jb.05128-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease composed of ClpY (HslU), an ATPase with unfolding activity, and ClpQ (HslV), a peptidase. In the ClpYQ proteolytic complex, the hexameric rings of ClpY (HslU) are responsible for protein recognition, unfolding, and translocation into the proteolytic inner chamber of the dodecameric ClpQ (HslV). Each of the three domains, N, I, and C, in ClpY has its own distinct activity. The double loops (amino acids [aa] 137 to 150 and 175 to 209) in domain I of ClpY are necessary for initial recognition/tethering of natural substrates such as SulA, a cell division inhibitor protein. The highly conserved sequence GYVG (aa 90 to 93) pore I site, along with the GESSG pore II site (aa 265 to 269), contribute to the central pore of ClpY in domain N. These two central loops of ClpY are in the center of its hexameric ring in which the energy of ATP hydrolysis allows substrate translocation and then degradation by ClpQ. However, no data have been obtained to determine the effect of the central loops on substrate binding or as part of the processivity of the ClpYQ complex. Thus, we probed the features of ClpY important for substrate engagement and protease processivity via random PCR or site-specific mutagenesis. In yeast two-hybrid analysis and pulldown assays, using isolated ClpY mutants and the pore I or pore II site of ClpY, each was examined for its influence on the adjoining structural regions of the substrates. The pore I site is essential for the translocation of the engaged substrates. Our in vivo study of the ClpY mutants also revealed that an ATP-binding site in domain N, separate from its role in polypeptide (ClpY) oligomerization, is required for complex formation with ClpQ. Additionally, we found that the tyrosine residue at position 408 in ClpY is critical for stabilization of hexamer formation between subunits. Therefore, our studies suggest that stepwise activities of the ClpYQ protease are necessary to facilitate the processive degradation of its natural substrates.
Collapse
|
8
|
Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system. J Bacteriol 2009; 191:4218-31. [PMID: 19395483 DOI: 10.1128/jb.00089-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease in which ClpQ is the peptidase subunit and ClpY is the ATPase and the substrate-binding subunit. The ATP-dependent proteolysis is mediated by substrate recognition in the ClpYQ complex. ClpY has three domains, N, I, and C, and these domains are discrete and exhibit different binding preferences. In vivo, ClpYQ targets SulA, RcsA, RpoH, and TraJ molecules. In this study, ClpY was analyzed to identify the molecular determinants required for the binding of its natural protein substrates. Using yeast two-hybrid analysis, we showed that domain I of ClpY contains the residues responsible for recognition of its natural substrates, while domain C is necessary to engage ClpQ. Moreover, the specific residues that lie in the amino acid (aa) 137 to 150 (loop 1) and aa 175 to 209 (loop 2) double loops in domain I of ClpY were shown to be necessary for natural substrate interaction. Additionally, the two-hybrid system, together with random PCR mutagenesis, allowed the isolation of ClpY mutants that displayed a range of binding activities with SulA, including a mutant with no SulA binding trait. Subsequently, via methyl methanesulfonate tests and cpsB::lacZ assays with, e.g., SulA and RcsA as targets, we concluded that aa 175 to 209 of loop 2 are involved in the tethering of natural substrates, and it is likely that both loops, aa 137 to 150 and aa 175 to 209, of ClpY domain I may assist in the delivery of substrates into the inner core for ultimate degradation by ClpQ.
Collapse
|