1
|
Makled AF, Ali SAM, Labeeb AZ, Salman SS, Shebl DZM, Hegazy SG, Sabal MS. Characterization of Candida species isolated from clinical specimens: insights into virulence traits, antifungal resistance and molecular profiles. BMC Microbiol 2024; 24:388. [PMID: 39367309 PMCID: PMC11453005 DOI: 10.1186/s12866-024-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Candida species have emerged as a significant cause of opportunistic infections. Alongside the expression of various virulence factors, the rise of antifungal resistance among Candida species presents a considerable clinical challenge. AIM This study aimed to identify different Candida species isolated from clinical specimens, evaluate their antifungal sensitivity patterns, identify key genes regulating virulence mechanisms using multiplex PCR and to assess any correlation between their virulence profiles and antifungal resistance patterns. METHOD A total of 100 Candida spp. was isolated from 630 different clinical specimens and identified to the species level. Their antifungal susceptibility was phenotypically evaluated in accordance with CLSI guidelines using the Vitek-2 Compact System. Virulence markers, including biofilm formation capacity, protease production, melanin production, coagulase production and hemolysin production, were also phenotypically detected. The genetic determinants for biofilm formation and extracellular hydrolytic enzymes were assessed using a multiplex PCR assay. RESULTS The prevalence of Candida spp. was 15.9%, with C. albicans (48%) and C. glabrata (16%) being the most common. C. albicans showed the highest virulence, with strong biofilm formation, and high proteinase and melanin production. Multiplex PCR revealed Hlp in 22.0%, Hwp in 80.0%, Als in 56.0%, and Sap genes in 56.0% of isolates. Virulence genes were more common in C. albicans than in non-albicans Candida (NAC). Resistance patterns significantly correlated with virulence profiles, with notable associations between flucytosine resistance and the presence of Hlp and Hwp genes. CONCLUSION The significant correlation between virulent markers such as germination, coagulase, hemolysin production and resistance patterns among different Candida isolates is crucial for predicting the severity and outcomes of Candida infections. This understanding aids in guiding tailored treatment strategies.
Collapse
Affiliation(s)
- Amal F Makled
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Sahar A M Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Azza Z Labeeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Samar S Salman
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Doaa Z M Shebl
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Sarah G Hegazy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt.
| | - Mona S Sabal
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| |
Collapse
|
2
|
El-Gazzar N, Elez RMMA, Attia ASA, Abdel-Warith AWA, Darwish MM, Younis EM, Eltahlawi RA, Mohamed KI, Davies SJ, Elsohaby I. Antifungal and antibiofilm effects of probiotic Lactobacillus salivarius, zinc nanoparticles, and zinc nanocomposites against Candida albicans from Nile tilapia ( Oreochromis niloticus), water and humans. Front Cell Infect Microbiol 2024; 14:1358270. [PMID: 38895734 PMCID: PMC11183309 DOI: 10.3389/fcimb.2024.1358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal M. Darwish
- Medical Microbiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A. Eltahlawi
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Gerges MA, Fahmy YA, Hosny T, Gandor NH, Mohammed SY, Mohamed TMA, Abdelmoteleb NEM, Esmaeel NE. Biofilm Formation and Aspartyl Proteinase Activity and Their Association with Azole Resistance Among Candida albicans Causing Vulvovaginal Candidiasis, Egypt. Infect Drug Resist 2023; 16:5283-5293. [PMID: 37601561 PMCID: PMC10439283 DOI: 10.2147/idr.s420580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Background Candida albicans (C. albicans) is a major cause of vulvovaginal candidiasis (VVC), a condition that is commonly treated with azole agents. Biofilm formation and aspartyl proteinase production are important virulence factors that could be linked to azole resistance in C. albicans impeding therapy. Aim To find out the association of both factors with azole resistance among C. albicans isolated from VVC cases in Egyptian nonpregnant women of childbearing age. Patients and Methods In a cross-sectional study, C. albicans was isolated from nonpregnant females diagnosed clinically as having VVC during a 1-year study period. Susceptibility to azole agents was tested using the disc diffusion method. Biofilm formation and aspartyl proteinase production were assessed phenotypically. Additionally, two biofilm-related genes (ALS1 and HWP1) and three proteinase genes (SAP2, SAP4, and SAP6) were screened for using polymerase chain reaction (PCR). Results Among 204 C. albicans isolates, azole resistance ratios were as follows: voriconazole (30.4%), itraconazole (17.6%), fluconazole (11.3%) and econazole (6.4%). Biofilm-producing capacity was detected in 63.2% of isolates, and 63.2% were proteinase producers. The frequencies of ALS1 and HWP1 were 69.6% and 74.5%, respectively, while SAP2, SAP4, and SAP6 were 69.2%, 88.7%, and 64.7%, respectively. Biofilm formation was significantly associated with azole resistance (P < 0.001 for each tested azole agent) as was proteinase production (P < 0.001 for fluconazole, voriconazole, and econazole resistance and P = 0.047 for itraconazole). Conclusion Among nonpregnant Egyptian women of childbearing age, azole resistance in C. albicans causing VVC is significantly associated with biofilm formation and proteinase production. The development of new therapeutic agents that can target these factors is warranted.
Collapse
Affiliation(s)
- Marian A Gerges
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Yasmin Ahmed Fahmy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thoraya Hosny
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nessma H Gandor
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sherif Y Mohammed
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Noura E Esmaeel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
4
|
Bagirova NS, Petukhova IN, Grigorievskaya ZV, Sytov AV, Slukin PV, Goremykina EA, Khokhlova OE, Fursova NK, Kazimov AE. Oral microbiota in patients with oropharyngeal cancer with an emphasis on <i>Candida</i> spp. HEAD AND NECK TUMORS (HNT) 2022. [DOI: 10.17650/2222-1468-2022-12-3-71-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction. Interactions between the 2 microbiota components – bacteria and fungi – are of interest as diagnostic and prognostic markers in selection of treatment tactics for oncological patients.Aim. To study microbiota of the oral cavity in patients with primary squamous cell carcinoma of the oropharyngeal area before and after surgical intervention to find biomarkers for rational selection of antifungal drugs.Materials and methods. At the Surgical Department of Head and Neck Tumors of the N. N. Blokhin National Research Center of Oncology, three-component study was performed: investigations of spectrum of Candida spp. isolates, Candida spp. strains’ resistance to antifungals, and oral washes in primary patients before and after surgery. mALDI-Tof microflex LT (Biotyper, Bruker Daltonics, germany) was used for strain identification; Sensititre Yeast ONE, YO10 (Trek Diagnostic System, united kingdom) plates were used for determination of minimal inhibiting concentrations of anti fungals. values of minimal inhibiting concentrations were evaluated based on the European Committee on Antimicrobial Susceptibility Testing (EuCAST) criteria (version 10.0).Results. four-year observation of patients at the surgical department of head and neck tumors of the N. N. Blokhin National Research Center of Oncology showed that the most common species of Candida is C. albicans (73.5 % of cases). Candida spp. resistance to antifungals was detected only for fluconazole (9.3 % of cases) and micafungin (8.0 % of cases), mostly among C. albicans strains. In 31.8 % of primary patients, oral washes prior to surgery showed growth of Candida spp. (probably, tissue colonization). After surgical intervention, Candida spp. growth was detected in 36.4 % of cases, only 1 of which was diagnosed as invasive mycosis. In 54.5 % of cases before and in 72.7 % of cases after surgery, gram-negative rods were detected. After surgical intervention, percentage of enterobacteria and non-fermenters significantly increased: 59.1 % versus 27.3 % (p <0.05) and 63.6 % versus 27.3 % (p <0.02), respectively. prior to surgery, non-fermenting gram-negative bacteria were represented only by P. aeruginosa; after surgery, the spectrum of non-fermenting gram-negative bacteria became wider but percentage of P. aeruginosa remained high: 71.4 %. ERG11 gene was identified only in 1 strain: C. albicans. FKS1 gene also was identified only in 1 strain: C. inconspicua. virulence factor genes were detected in 57.1 % of strains.Conclusion. Surgical intervention is associated with changes in bacterial microbiota but not fugal microbiota. presence of virulence factor genes and resistance genes in Candida spp. strains should be considered a biomarker allowing to differentiate between colonization and candida infection and can be used for rational selection of antifungal drugs in prevention and treatment of invasive candidiasis, especially in the absence of criteria for interpretation of measured minimal inhibiting concentrations of antifungals.
Collapse
Affiliation(s)
- N. S. Bagirova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - I. N. Petukhova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - Z. V. Grigorievskaya
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. V. Sytov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - P. V. Slukin
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor
| | - E. A. Goremykina
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - O. E. Khokhlova
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - N. K. Fursova
- State Scientific Center of Applied Microbiology and Biotechnology of Rospotrebnadzor; Pushchinsky State Natural Science Institute
| | - A. E. Kazimov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| |
Collapse
|
5
|
Analysis of Biofilm-Related Genes and Antifungal Susceptibility Pattern of Vaginal Candida albicans and Non- Candida albicans Species. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5598907. [PMID: 34136569 PMCID: PMC8179781 DOI: 10.1155/2021/5598907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/16/2021] [Indexed: 01/12/2023]
Abstract
Background Vulvovaginal candidiasis caused by Candida species is a prevalent fungal infection among women. It is believed that the pathogenesis of Candida species is linked with the production of biofilm which is considered a virulence factor for this organism. The aim of this study was molecular identification, antifungal susceptibility, biomass quantification of biofilm, and detection of virulence markers of Candida species. Methods We investigated the molecular identification of 70 vaginal isolates of Candida species, antifungal resistance to amphotericin B, fluconazole, itraconazole, and voriconazole according to CLSI M27-A3 and M27-S4, biofilm formation, and frequency analysis of biofilm-related ALS1, ALS3, and HWP1 genes. Results Our findings showed that the most common yeast isolated from vaginal discharge was C. albicans (67%), followed by the non-Candida albicans species (33%). All C. albicans complex isolates were confirmed as C. albicans by HWP-PCR, and all isolates of the C. glabrata complex were revealed to be C. glabrata sensu stricto using the multiplex PCR method. FLC resistance was observed in 23.4% of C. albicans and 7.7% of C. glabrata. The resistance rate to ITC was found in 10.6% of C. albicans. The frequency of ALS1, ALS3, and HWP1 genes among Candida species was 67.1%, 80%, and 81.4%, respectively. Biofilm formation was observed in 54.3% of Candida species, and the highest frequency detected as a virulence factor was for the ALS3 gene (97.3%) in biofilm-forming species. Discussion. Our results showed the importance of molecular epidemiology studies, investigating antifungal susceptibility profiles, and understanding the role of biofilm-related virulence markers in the pathogenesis of Candida strains.
Collapse
|