1
|
Abdel-Haffiez SH, Khalil NM. Effect of platelet rich plasma injection on bone formation in the expanded mid-palatal suture in rabbits: a randomized controlled animal study. BMC Oral Health 2024; 24:167. [PMID: 38308245 PMCID: PMC10835953 DOI: 10.1186/s12903-024-03922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Mid-Palatal suture expansion needs long retention period due to delayed bone formation in the expanded suture. Platelet-rich plasma (PRP) is a concentrated source of growth factors which increase bone formation. The aim of this study was to evaluate the effect of PRP injection on bone formation in expanded mid palatal suture in rabbits. METHODS In this prospective randomized controlled animal study, Twenty male rabbits (8-weeks-old) were subjected to mid-palatal expansion for 5 days. Animals were afterwards randomly divided into control group A & study group B. PRP was prepared and injected in the mid-palatal suture in animals belonging to group B only. After 6 weeks of retention, all animals were euthanized, and premaxillae were prepared for histological, histomorphometric and immunohistochemical analysis. Student t-test and paired t-test were used to compare the means of the two groups and within the same group respectively. Significance level set at p ≤ 0.05. RESULTS Histomorphometric analysis revealed a significant increase (p < 0.001) in the mean percentage of new bone in the study group (14.4%) compared to the control (1.4%). Suture width in study group was significantly wider than the control group (278.8 ± 9μms and 120.4 ± 3.4μms, p < 0.001). There was a significant increase in vascular density in study group than control group (309 ± 65.34 and 243.86 ± 48.1, p = 0.021). Osteopontin immuno-expression revealed a significant increase in optical density in study group than control group (0.21 ± 0.02 & 0.12 ± 0.01, p < 0.001). CONCLUSIONS In rabbit model, PRP injection can accelerate new bone formation in the expanded mid-palatal suture when compared to the control. This could hopefully result in a more stable midpalatal expansion and a reduced retention period.
Collapse
|
2
|
Zhang K, Xu T, Xie H, Li J, Fu W. Donor-Matched Peripheral Blood-Derived Mesenchymal Stem Cells Combined With Platelet-Rich Plasma Synergistically Ameliorate Surgery-Induced Osteoarthritis in Rabbits: An In Vitro and In Vivo Study. Am J Sports Med 2023; 51:3008-3024. [PMID: 37528751 DOI: 10.1177/03635465231187042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a common disease that causes joint pain and disability. Stem cell therapy is emerging as a promising treatment for OA. PURPOSE To evaluate the ability of peripheral blood-derived mesenchymal stem cells (PBMSCs) combined with donor-matched platelet-rich plasma (PRP) to treat OA in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS PBMSCs and donor-matched PRP were isolated and prepared from the same rabbit. PBMSCs were treated with serum-free medium, fetal bovine serum, and PRP; a series of PBMSC behaviors, including proliferation, migration, and adhesion, were compared among groups. The ability of PBMSCs or PRP alone and PBMSCs+PRP to protect chondrocytes against proinflammatory cytokine (interleukin 1β [IL-1β]) treatment was compared by analyzing reactive oxygen species (ROS)-scavenging ability and apoptosis. Real-time quantitative polymerase chain reaction and immunofluorescence were used to investigate the expression of extracellular matrix (ECM) metabolism genes and proteins, and Western blotting was used to explore the potential mechanism of the corresponding signaling pathway. In vivo, the effect of PBMSCs+PRP on cartilage and inflammation of the synovium was observed in a surgery-induced OA rabbit model via gross observation, histological and immunohistochemical staining, and enzyme-linked immunosorbent assay. RESULTS Proliferation, migration, and adhesion ability were enhanced in PBMSCs treated with PRP. Moreover, compared with either PBMSCs or PRP alone, PBMSCs+PRP enhanced ROS-scavenging ability and inhibited apoptosis in IL-1β-treated chondrocytes. PBMSCs+PRP also reversed the IL-1β-induced degradation of collagen type 2 and aggrecan and increased expression of matrix metalloproteinase 13, and this effect was related to increased expression of ECM synthesis and decreased expression of degradation and inflammatory genes and proteins. Mechanistically, PBMSCs+PRP reduced the phosphorylation of inhibitor of nuclear factor-κBα (IκBα), which further inhibited the phosphorylation of downstream nuclear factor-κB (NF-κB) in the NF-κB signaling pathway. In vivo, compared with PBMSCs or PRP alone, intra-articular (IA) injection of PBMSCs+PRP enhanced cartilage regeneration and attenuated synovial inflammation in OA-induced rabbits. CONCLUSION These results demonstrate that PRP could enhance biological activities, including viability, migration, and adhesion, in PBMSCs. PBMSCs+PRP could rescue ECM degeneration by inhibiting inflammatory signaling in IL-1β-treated OA chondrocytes. In addition, IA injection of PBMSCs+PRP effectively attenuated OA progression in a surgery-induced OA rabbit model. CLINICAL RELEVANCE PBMSCs+PRP may provide a promising treatment for knee OA, and this study can advance the related basic research.
Collapse
Affiliation(s)
- Kaibo Zhang
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianhao Xu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huiqi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weili Fu
- Sports Medicine Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Wang J, Xie L, Wang X, Zheng W, Chen H, Cai L, Chen L. The effects of oyster shell/alpha-calcium sulfate hemihydrate/platelet-rich plasma/bone mesenchymal stem cells bioengineering scaffold on rat critical-sized calvarial defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:96. [PMID: 33128637 DOI: 10.1007/s10856-020-06441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Engineering scaffolds combining natural biomineral and artificially synthesized material hold promising potential for bone tissue regeneration. We fabricated a bioengineering scaffold, oyster shell (OS) and alpha-calcium sulfate hemihydrate (α-CSH) as scaffold, platelet-rich plasma (PRP) as provider of growth factors and bone mesenchymal stem cells (BMSCs) as seed cells, and determined it could be applied as a new type of bone graft substitutes by rat calvarial defects repairing experiment in vitro and in vivo. SEM showed that the mean diameter of the pores was about 150 μm with a range of 50-200 μm, and scaffold's porosity was ~27.4% by Archimedes' Principle. In vitro, Scaffold + BMSCs + PRP group presented a higher ALP activity compared with other groups by ELISA (P < 0.05). But the expression of OC was not detectable on day 4 or 8. The MTT assay showed that the relative cell number of BMSCs+PRP group increased significantly (P < 0.05). In vivo, the smallest defect area of skull and highest volume of regenerated new bone were observed in Scaffold + PRP + BMSCs group by X-ray and Micro-CT analysis (P < 0.05). And the similar results also were observed in HE and Masson staining. The immunohistochemistry staining for osteogenic marker proteins ALP and OC showed that the most obvious positive staining was observed in Scaffold + PRP + BMSCs group (P < 0.05). The expression of inflammatory markers IL-6 and TNF-α was the lowest in control group (P < 0.05). In conclusion, a bioengineering scaffold based on OS, created by simply combining α-CSH and PRP and implanting with BMSCs, could be clinically useful and has marked advantages as a targeted, off-the-shelf, cell-loaded treatment option for the bone healing of critical-size calvarial defects.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linzhen Xie
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xingyu Wang
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhao Zheng
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hua Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Leyi Cai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Long Chen
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, NO.109, XueYuan West Road, Luheng District, Wenzhou, Zhejiang Province, 325000, P.R. China.
- Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
In Vitro Evaluation of Proliferation and Migration Behaviour of Human Bone Marrow-Derived Mesenchymal Stem Cells in Presence of Platelet-Rich Plasma. Int J Dent 2019; 2019:9639820. [PMID: 31093287 PMCID: PMC6481138 DOI: 10.1155/2019/9639820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Objective To access the effects of platelet-rich plasma (PRP) on the behaviour of human bone marrow-derived mesenchymal stem cells (hBMSCs), including proliferation and migration. Methods PRP was diluted with DMEM/F12, resulting in concentrations of 1%, 2%, and 5%. The proliferation of hBMSCs was examined by 2 methods: cell-number counting with the haemocytometer method and the colony-forming unit-fibroblast (CFU-F) assay. Cell migration was evaluated using the scratch wound healing (SWH) assay; after that, the recorded digital images were analysed by the Image-Analysis J 1.51j8 software to compare the cell-free areas between groups after 0, 24, and 48 hours. Results hBMSCs cultured in DMEM/F12 at PRP concentrations of 1%, 2%, and 5% were all able to proliferate and migrate. In the 5% PRP group, hBMSCs proliferated greatly with a significantly higher cell number than reported for all other groups on days 5, 7, and 9. CFU-Fs were observed in all groups, except for the negative control group. The SWH assay demonstrated that hBMSCs cultured in 2% and 5% PRP almost filled the artificial wound scratch and significantly migrated more than those of all other groups at both 24 h and 48 h. Conclusion This study indicated that, due to the significant enhancement of cell proliferation and migration, 5% PRP might be the optimal concentration that should be used to promote the potential of hBMSCs in wound healing.
Collapse
|
5
|
Scully D, Naseem KM, Matsakas A. Platelet biology in regenerative medicine of skeletal muscle. Acta Physiol (Oxf) 2018; 223:e13071. [PMID: 29633517 DOI: 10.1111/apha.13071] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2018] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Platelet-based applications such as platelet-rich plasma (PRP) and platelet releasate have gained unprecedented attention in regenerative medicine across a variety of tissues as of late. The rationale behind utilizing PRP originates in the delivery of key cytokines and growth factors from α-granules to the targeted area, which in turn act as cell cycle regulators and promote the healing process across a variety of tissues. The aim of the present review is to assimilate current experimental evidence on the role of platelets as biomaterials in tissue regeneration, particularly in skeletal muscle, by integrating findings from human, animal and cell studies. This review is composed of 3 parts: firstly, we review key aspects of platelet biology that precede the preparation and use of platelet-related applications for tissue regeneration. Secondly, we critically discuss relevant evidence on platelet-mediated regeneration in skeletal muscle focusing on findings from (i) clinical trials, (ii) experimental animal studies and (iii) cell culture studies; and thirdly, we discuss the application of platelets in the regeneration of several other tissues including tendon, bone, liver, vessels and nerve. Finally, we review key technical variations in platelet preparation that may account for the large discrepancy in outcomes from different studies. This review provides an up-to-date reference tool for biomedical and clinical scientists involved in platelet-mediated tissue regenerative applications.
Collapse
Affiliation(s)
- D. Scully
- Molecular Physiology Laboratory; Centre for Atherothrombotic & Metabolic Disease; Hull York Medical School; University of Hull; Hull UK
| | - K. M. Naseem
- Leeds Institute of Cardiovascular and Metabolic Medicine; University of Leeds; Leeds UK
| | - A. Matsakas
- Molecular Physiology Laboratory; Centre for Atherothrombotic & Metabolic Disease; Hull York Medical School; University of Hull; Hull UK
| |
Collapse
|