1
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
3
|
Izadifar Z, Honaramooz A, Wiebe S, Belev G, Chen X, Chapman D. Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments. Biomaterials 2016; 82:151-67. [DOI: 10.1016/j.biomaterials.2015.11.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 02/01/2023]
|
4
|
Zhang J, Zhou G, Tian D, Lin R, Peng G, Su M. Microdissection of Human Esophagogastric Junction Wall with Phase-contrast X-ray CT Imaging. Sci Rep 2015; 5:13831. [PMID: 26346099 PMCID: PMC4561904 DOI: 10.1038/srep13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
Phase-contrast x-ray imaging using an x-ray interferometer has great potential to reveal the structures inside soft tissues, because the sensitivity of this method to hydrogen, carbon, nitrogen, and oxygen is about 1000 times higher than that of the absorption-contrast x-ray method. In this study, we used phase-contrast X-ray CT to investigate human resected esophagogastric junction. This technology revealed the three-layer structure of the esophagogastric junction wall-mucous, submucosa and muscular layers. The mucous and muscular layers were clearly separated by a loose submucosa layer with a honeycomb appearance. The shape of the mucous and muscular layers was intact. The boundary between the mucous and submucosa layers was distinct, as was the border of the muscular and submucosa layers. The surface of the esophagogastric junction was displayed clearly through 3D reconstruction. The technology might be helpful in the diagnosis of esophagogastric junction lesion, especially for the early adenocarcinoma.
Collapse
Affiliation(s)
- Jianfa Zhang
- First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Guangzhao Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Dongping Tian
- Institute of Clinical Pathology & Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Runhua Lin
- Institute of Clinical Pathology & Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Guanyun Peng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Min Su
- Institute of Clinical Pathology & Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| |
Collapse
|
5
|
Zhang J, Tian D, Lin R, zhou G, Peng G, Su M. Phase-contrast X-ray CT imaging of esophagus and esophageal carcinoma. Sci Rep 2014; 4:5332. [PMID: 24939041 PMCID: PMC4061548 DOI: 10.1038/srep05332] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/14/2014] [Indexed: 02/05/2023] Open
Abstract
The electron density resolution is 1000 times higher for synchrotron-radiation phase-contrast CT imaging than conventional X-ray absorption imaging in light elements, with which high-resolution X-ray imaging of biological soft tissue can be achieved. In the present study, we used phase-contrast X-ray CT to investigate human resected esophagus and esophageal carcinoma specimens. This technology revealed the three-layer structure of the esophageal wall-- mucous, submucosa and muscular layers. The mucous and muscular layers were clearly separated by a loose submucosa layer with a honeycomb appearance. The surface of the mucous layer was smooth. In esophageal carcinoma, because of tumor tissue infiltration, the submucosa layer was absent, which indicated destruction of the submucosa. The boundary between normal tissue and tumor was comparatively fuzzy, the three-layer structure of the esophageal wall was indistinct. The surface of the mucous layer was rugose. The technology might be helpful in tumor staging of esophageal carcinoma.
Collapse
Affiliation(s)
- Jianfa Zhang
- First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Dongping Tian
- Institute of Clinical Pathology & Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Runhua Lin
- Institute of Clinical Pathology & Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guangzhao zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Guanyun Peng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Min Su
- Institute of Clinical Pathology & Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- The Judicial Critical Center, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
6
|
Appel AA, Anastasio MA, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials 2013; 34:6615-30. [PMID: 23768903 PMCID: PMC3799904 DOI: 10.1016/j.biomaterials.2013.05.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 12/11/2022]
Abstract
Biomaterials are employed in the fields of tissue engineering and regenerative medicine (TERM) in order to enhance the regeneration or replacement of tissue function and/or structure. The unique environments resulting from the presence of biomaterials, cells, and tissues result in distinct challenges in regards to monitoring and assessing the results of these interventions. Imaging technologies for three-dimensional (3D) analysis have been identified as a strategic priority in TERM research. Traditionally, histological and immunohistochemical techniques have been used to evaluate engineered tissues. However, these methods do not allow for an accurate volume assessment, are invasive, and do not provide information on functional status. Imaging techniques are needed that enable non-destructive, longitudinal, quantitative, and three-dimensional analysis of TERM strategies. This review focuses on evaluating the application of available imaging modalities for assessment of biomaterials and tissue in TERM applications. Included is a discussion of limitations of these techniques and identification of areas for further development.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St, Chicago, IL 60616, USA
- Research Service, Hines Veterans Administration Hospital, Hines, IL, USA
| |
Collapse
|
7
|
Bravin A, Coan P, Suortti P. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys Med Biol 2012; 58:R1-35. [PMID: 23220766 DOI: 10.1088/0031-9155/58/1/r1] [Citation(s) in RCA: 400] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phase-contrast x-ray imaging (PCI) is an innovative method that is sensitive to the refraction of the x-rays in matter. PCI is particularly adapted to visualize weakly absorbing details like those often encountered in biology and medicine. In past years, PCI has become one of the most used imaging methods in laboratory and preclinical studies: its unique characteristics allow high contrast 3D visualization of thick and complex samples even at high spatial resolution. Applications have covered a wide range of pathologies and organs, and are more and more often performed in vivo. Several techniques are now available to exploit and visualize the phase-contrast: propagation- and analyzer-based, crystal and grating interferometry and non-interferometric methods like the coded aperture. In this review, covering the last five years, we will give an overview of the main theoretical and experimental developments and of the important steps performed towards the clinical implementation of PCI.
Collapse
Affiliation(s)
- Alberto Bravin
- European Synchrotron Radiation Facility, 6 rue Horowitz, 38043 Grenoble Cedex, France.
| | | | | |
Collapse
|