1
|
Yu S, Mao B, Zhou Y, Liu Y, Yi C, Li F, Yao D, Xu P, San Liang X, Zhang T. Large-Scale Cortical Network Analysis and Classification of MI-BCI Tasks Based on Bayesian Nonnegative Matrix Factorization. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2187-2197. [PMID: 38837930 DOI: 10.1109/tnsre.2024.3409872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Motor imagery (MI) is a high-level cognitive process that has been widely applied to clinical rehabilitation and brain-computer interfaces (BCIs). However, the decoding of MI tasks still faces challenges, and the neural mechanisms underlying its application are unclear, which seriously hinders the development of MI-based clinical applications and BCIs. Here, we combined EEG source reconstruction and Bayesian nonnegative matrix factorization (NMF) methods to construct large-scale cortical networks of left-hand and right-hand MI tasks. Compared to right-hand MI, the results showed that the significantly increased functional network connectivities (FNCs) mainly located among the visual network (VN), sensorimotor network (SMN), right temporal network, right central executive network, and right parietal network in the left-hand MI at the β (13-30Hz) and all (8-30Hz) frequency bands. For the network properties analysis, we found that the clustering coefficient, global efficiency, and local efficiency were significantly increased and characteristic path length was significantly decreased in left-hand MI compared to right-hand MI at the β and all frequency bands. These network pattern differences indicated that the left-hand MI may need more modulation of multiple large-scale networks (i.e., VN and SMN) mainly located in the right hemisphere. Finally, based on the spatial pattern network of FNC and network properties, we propose a classification model. The proposed model achieves a top classification accuracy of 78.2% in cross-subject two-class MI-BCI tasks. Overall, our findings provide new insights into the neural mechanisms of MI and a potential network biomarker to identify MI-BCI tasks.
Collapse
|
2
|
Chen L, Chen Y, Fu WB, Huang DF, Lo WLA. The Effect of Virtual Reality on Motor Anticipation and Hand Function in Patients with Subacute Stroke: A Randomized Trial on Movement-Related Potential. Neural Plast 2022; 2022:7399995. [PMID: 35111219 PMCID: PMC8803454 DOI: 10.1155/2022/7399995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background Impaired cognitive ability to anticipate the required control for an upcoming task in patients with stroke may affect rehabilitation outcome. The cortical excitability of task-related motor anticipation for upper limb movement induced by virtual reality (VR) training remains unclear. Aims To investigate the effect of VR training on the cortical excitability of motor anticipation when executing upper limb movement in patients with subacute stroke. Methods A total of thirty-six stroke survivors with upper limb hemiparesis resulting from the first occurrence of stroke within 1 to 3 months were recruited. Participants were randomly allocated to the VR intervention group or conventional therapy group. Event-related potentials (ERPs) and electromyography (EMG) were used to simultaneously record the cortical excitability and muscle activities during palmar grasp motion. Outcome measures of the contingent negative variation (CNV) latency and amplitude, EMG reaction time, Upper Limb Fugl-Meyer Assessment (UL-FMA), Action Research Arm Test (ARAT), and National Institutes of Health Stroke Scale (NIHSS) were recorded pre- and postintervention. The between-group difference was analysed by mixed model ANOVA. Results The EMG onset time of the paretic hand in the VR group was earlier than that observed in the control group (t = 2.174, p = 0.039) postintervention. CNV latency reduction postintervention was larger in the VR group than in the control group (t = 2.411, p = 0.021) during paretic hand movement. The reduction in CNV amplitude in the VR group was larger in the VR group than in the control group (p < 0.001 for all electrodes except for C3) when executing paretic hand movement. ARAT and UL-FMA scores were significantly higher in the VR group than in the control group (p = 0.019 and p = 0.037, respectively) postintervention. No significant difference in the reduction in NIHSS was found between the VR and control groups (p = 0.072). Conclusions VR intervention is superior to conventional therapy to improve the cognitive neural process of motor anticipation and reduce the excessive compensatory activation of the contralesional hemisphere. The improvements observed in the cognitive neural process corroborated with the improvements in hand function.
Collapse
Affiliation(s)
- Ling Chen
- Department of Acupuncture and Moxibustion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Bin Fu
- Department of Acupuncture and Moxibustion, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dong Feng Huang
- Department of Rehabilitation, The First Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Sun Yat-sen University, Guangzhou 510080, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation, The First Affiliated Hospital, Sun Yat-sen University, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Sensorimotor Mapping With MEG: An Update on the Current State of Clinical Research and Practice With Considerations for Clinical Practice Guidelines. J Clin Neurophysiol 2021; 37:564-573. [PMID: 33165229 DOI: 10.1097/wnp.0000000000000481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this article, we present the clinical indications and advances in the use of magnetoencephalography to map the primary sensorimotor (SM1) cortex in neurosurgical patients noninvasively. We emphasize the advantages of magnetoencephalography over sensorimotor mapping using functional magnetic resonance imaging. Recommendations to the referring physicians and the clinical magnetoencephalographers to achieve appropriate sensorimotor cortex mapping using magnetoencephalography are proposed. We finally provide some practical advice for the use of corticomuscular coherence, cortico-kinematic coherence, and mu rhythm suppression in this indication. Magnetoencephalography should now be considered as a method of reference for presurgical functional mapping of the sensorimotor cortex.
Collapse
|
4
|
Gu L, Yu Z, Ma T, Wang H, Li Z, Fan H. EEG-based Classification of Lower Limb Motor Imagery with Brain Network Analysis. Neuroscience 2020; 436:93-109. [PMID: 32283182 DOI: 10.1016/j.neuroscience.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 01/06/2023]
Abstract
This study aims to investigate the difference in cortical signal characteristics between the left and right foot imaginary movements and to improve the classification accuracy of the experimental tasks. Raw signals were gathered from 64-channel scalp electroencephalograms of 11 healthy participants. Firstly, the cortical source model was defined with 62 regions of interest over the sensorimotor cortex (nine Brodmann areas). Secondly, functional connectivity was calculated by phase lock value for α and β rhythm networks. Thirdly, network-based statistics were applied to identify whether there existed stable and significant subnetworks that formed between the two types of motor imagery tasks. Meanwhile, ten graph theory indices were investigated for each network by t-test to determine statistical significance between tasks. Finally, sparse multinomial logistic regression (SMLR)-support vector machine (SVM), as a feature selection and classification model, was used to analyze the graph theory features. The specific time-frequency (α event-related desynchronization and β event-related synchronization) difference network between the two tasks was congregated at the midline and demonstrated significant connections in the premotor areas and primary somatosensory cortex. A few of statistically significant differences in the network properties were observed between tasks in the α and β rhythm. The SMLR-SVM classification model achieved fair discrimination accuracy between imaginary movements of the two feet (maximum 75% accuracy rate in single-trial analyses). This study reveals the network mechanism of the discrimination of the left and right foot motor imagery, which can provide a novel avenue for the BCI system by unilateral lower limb motor imagery.
Collapse
Affiliation(s)
- Lingyun Gu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China
| | - Zhenhua Yu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China
| | - Tian Ma
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China
| | - Haixian Wang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, PR China.
| | - Zhanli Li
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, Shanxi, PR China.
| | - Hui Fan
- Co-innovation Center of Shandong Colleges and Universities: Future Intelligent Computing, Shandong Technology and Business University, Yantai 264005, Shandong, PR China
| |
Collapse
|
5
|
Bulubas L, Sardesh N, Traut T, Findlay A, Mizuiri D, Honma SM, Krieg SM, Berger MS, Nagarajan SS, Tarapore PE. Motor Cortical Network Plasticity in Patients With Recurrent Brain Tumors. Front Hum Neurosci 2020; 14:118. [PMID: 32317952 PMCID: PMC7146050 DOI: 10.3389/fnhum.2020.00118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: The adult brain’s potential for plastic reorganization is an important mechanism for the preservation and restoration of function in patients with primary glial neoplasm. Patients with recurrent brain tumors requiring multiple interventions over time present an opportunity to examine brain reorganization. Magnetoencephalography (MEG) is a noninvasive imaging modality that can be used for motor cortical network mapping which, when performed at regular intervals, offers insight into this process of reorganization. Utilizing MEG-based motor mapping, we sought to characterize the reorganization of motor cortical networks over time in a cohort of 78 patients with recurrent glioma. Methods: MEG-based motor cortical maps were obtained by measuring event-related desynchronization (ERD) in ß-band frequency during unilateral index finger flexion. Each patient presented at our Department at least on two occasions for tumor resection due to tumor recurrence, and MEG-based motor mapping was performed as part of preoperative assessment before each surgical resection. Whole-brain activation patterns from first to second MEG scan (obtained before first and second surgery) were compared. Additionally, we calculated distances of activation peaks, which represent the location of the primary motor cortex (MC), to determine the magnitude of movement in motor eloquent areas between the first and second MEG scan. We also explored which demographic, anatomic, and pathological factors influence these shifts. Results: The whole-brain activation motor maps showed a subtle movement of the primary MC from first to second timepoint, as was confirmed by the determination of motor activation peaks. The shift of ipsilesional MC was directly correlated with a frontal-parietal tumor location (p < 0.001), presence of motor deficits (p = 0.021), and with a longer period between MEG scans (p = 0.048). Also, a disengagement of wide areas in the contralesional (ipsilateral to finger movement) hemisphere at the second time point was observed. Conclusions: MEG imaging is a sensitive method for depicting the plasticity of the motor cortical network. Although the location of the primary MC undergoes only subtle changes, appreciable shifts can occur in the setting of a stronger and longer impairment of the tumor on the MC. The ipsilateral hemisphere may serve as a reservoir for functional recovery.
Collapse
Affiliation(s)
- Lucia Bulubas
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurosurgery and TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität (TU), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians Universität (LMU), Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Nina Sardesh
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Tavish Traut
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Anne Findlay
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Danielle Mizuiri
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Susanne M Honma
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Sandro M Krieg
- Department of Neurosurgery and TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität (TU), Munich, Germany
| | - Mitchel S Berger
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Srikantan S Nagarajan
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| | - Phiroz E Tarapore
- Biomagnetic Imaging Lab, Department of Radiology and Biomedical Imaging, University of California San Francisco (UCSF), San Francisco, CA, United States.,Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
6
|
Kreidenhuber R, De Tiège X, Rampp S. Presurgical Functional Cortical Mapping Using Electromagnetic Source Imaging. Front Neurol 2019; 10:628. [PMID: 31249552 PMCID: PMC6584755 DOI: 10.3389/fneur.2019.00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/28/2019] [Indexed: 02/03/2023] Open
Abstract
Preoperative localization of functionally eloquent cortex (functional cortical mapping) is common clinical practice in order to avoid or reduce postoperative morbidity. This review aims at providing a general overview of magnetoencephalography (MEG) and high-density electroencephalography (hdEEG) based methods and their clinical role as compared to common alternatives for functional cortical mapping of (1) verbal language function, (2) sensorimotor cortex, (3) memory, (4) visual, and (5) auditory cortex. We highlight strengths, weaknesses and limitations of these functional cortical mapping modalities based on findings in the recent literature. We also compare their performance relative to other non-invasive functional cortical mapping methods, such as functional Magnetic Resonance Imaging (fMRI), Transcranial Magnetic Stimulation (TMS), and to invasive methods like the intracarotid Amobarbital Test (WADA-Test) or intracranial investigations.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Neurology, Christian-Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria.,Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionelle du Cerveau, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany.,Department of Neurosurgery, University Hospital Halle, Halle, Germany
| |
Collapse
|
7
|
Larivière S, Xifra-Porxas A, Kassinopoulos M, Niso G, Baillet S, Mitsis GD, Boudrias MH. Functional and effective reorganization of the aging brain during unimanual and bimanual hand movements. Hum Brain Mapp 2019; 40:3027-3040. [PMID: 30866155 DOI: 10.1002/hbm.24578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 02/03/2023] Open
Abstract
Motor performance decline observed during aging is linked to changes in brain structure and function, however, the precise neural reorganization associated with these changes remains largely unknown. We investigated the neurophysiological correlates of this reorganization by quantifying functional and effective brain network connectivity in elderly individuals (n = 11; mean age = 67.5 years), compared to young adults (n = 12; mean age = 23.7 years), while they performed visually-guided unimanual and bimanual handgrips inside the magnetoencephalography (MEG) scanner. Through a combination of principal component analysis and Granger causality, we observed age-related increases in functional and effective connectivity in whole-brain, task-related motor networks. Specifically, elderly individuals demonstrated (i) greater information flow from contralateral parietal and ipsilateral secondary motor regions to the left primary motor cortex during the unimanual task and (ii) decreased interhemispheric temporo-frontal communication during the bimanual task. Maintenance of motor performance and task accuracy in elderly was achieved by hyperactivation of the task-specific motor networks, reflecting a possible mechanism by which the aging brain recruits additional resources to counteract known myelo- and cytoarchitectural changes. Furthermore, resting-state sessions acquired before and after each motor task revealed that both older and younger adults maintain the capacity to adapt to task demands via network-wide increases in functional connectivity. Collectively, our study consolidates functional connectivity and directionality of information flow in systems-level cortical networks during aging and furthers our understanding of neuronal flexibility in motor processes.
Collapse
Affiliation(s)
- Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Alba Xifra-Porxas
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Michalis Kassinopoulos
- Department of Biological and Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Guiomar Niso
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain.,Biomedical Image Technologies, Technical University of Madrid and CIBER-BBN, Madrid, Spain
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, Québec, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Québec, Canada
| |
Collapse
|
8
|
Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury. Neural Plast 2018; 2018:9354207. [PMID: 29853852 PMCID: PMC5954936 DOI: 10.1155/2018/9354207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/21/2018] [Indexed: 12/18/2022] Open
Abstract
Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right) and received the higher inflow (left) among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.
Collapse
|
9
|
Investigating the Role of Alpha and Beta Rhythms in Functional Motor Networks. Neuroscience 2018; 378:54-70. [DOI: 10.1016/j.neuroscience.2016.05.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022]
|
10
|
Presurgical electromagnetic functional brain mapping in refractory focal epilepsy. ZEITSCHRIFT FUR EPILEPTOLOGIE 2018. [DOI: 10.1007/s10309-018-0189-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Willemse RB, Hillebrand A, Ronner HE, Vandertop WP, Stam CJ. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. NEUROIMAGE-CLINICAL 2015; 10:46-53. [PMID: 26693401 PMCID: PMC4660376 DOI: 10.1016/j.nicl.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/27/2023]
Abstract
Objectives The presence of intracranial lesions or epilepsy may lead to functional reorganization and hemispheric lateralization. We applied a clinical magnetoencephalography (MEG) protocol for the localization of the contralateral and ipsilateral S1 and M1 of the foot and hand in patients with non-lesional epilepsy, stroke, developmental brain injury, traumatic brain injury and brain tumors. We investigated whether differences in activation patterns could be related to underlying pathology. Methods Using dipole fitting, we localized the sources underlying sensory and motor evoked magnetic fields (SEFs and MEFs) of both hands and feet following unilateral stimulation of the median nerve (MN) and posterior tibial nerve (PTN) in 325 consecutive patients. The primary motor cortex was localized using beamforming following a self-paced repetitive motor task for each hand and foot. Results The success rate for motor and sensory localization for the feet was significantly lower than for the hands (motor_hand 94.6% versus motor_feet 81.8%, p < 0.001; sensory_hand 95.3% versus sensory_feet 76.0%, p < 0.001). MN and PTN stimulation activated 86.6% in the contralateral S1, with ipsilateral activation < 0.5%. Motor cortex activation localized contralaterally in 76.1% (5.2% ipsilateral, 7.6% bilateral and 11.1% failures) of all motor MEG recordings. The ipsilateral motor responses were found in 43 (14%) out of 308 patients with motor recordings (range: 8.3–50%, depending on the underlying pathology), and had a higher occurrence in the foot than in the hand (motor_foot 44.8% versus motor_hand 29.6%, p = 0.031). Ipsilateral motor responses tended to be more frequent in patients with a history of stroke, traumatic brain injury (TBI) or developmental brain lesions (p = 0.063). Conclusions MEG localization of sensorimotor cortex activation was more successful for the hand compared to the foot. In patients with neural lesions, there were signs of brain reorganization as measured by more frequent ipsilateral motor cortical activation of the foot in addition to the traditional sensory and motor activation patterns in the contralateral hemisphere. The presence of ipsilateral neural reorganization, especially around the foot motor area, suggests that careful mapping of the hand and foot in both contralateral and ipsilateral hemispheres prior to surgery might minimize postoperative deficits. Using MEG, S1 and M1 responses of the hand and foot were mapped in patients with brain tumors or epilepsy. Localization of the hand was more successful than of the foot. Ipsilateral S1 responses were rarely seen but ipsilateral M1 responses differed by underlying pathology and limb. Results indicate that differential sensorimotor re-organization can occur in the presence of pathology. Ipsilateral and contralateral mapping of the hand and foot should be done to minimize postsurgical dysfunction.
Collapse
Affiliation(s)
- Ronald B Willemse
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Hanneke E Ronner
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| | - W Peter Vandertop
- Neurosurgical Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Dumas G, Soussignan R, Hugueville L, Martinerie J, Nadel J. Revisiting mu suppression in autism spectrum disorder. Brain Res 2014; 1585:108-19. [PMID: 25148709 DOI: 10.1016/j.brainres.2014.08.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/25/2022]
Abstract
Two aspects of the EEG literature lead us to revisit mu suppression in Autism Spectrum Disorder (ASD). First and despite the fact that the mu rhythm can be functionally segregated in two discrete sub-bands, 8-10 Hz and 10-12/13 Hz, mu-suppression in ASD has been analyzed as a homogeneous phenomenon covering the 8-13 Hz frequency. Second and although alpha-like activity is usually found across the entire scalp, ASD studies of action observation have focused on the central electrodes (C3/C4). The present study was aimed at testing on the whole brain the hypothesis of a functional dissociation of mu and alpha responses to the observation of human actions in ASD according to bandwidths. Electroencephalographic (EEG) mu and alpha responses to execution and observation of hand gestures were recorded on the whole scalp in high functioning subjects with ASD and typical subjects. When two bandwidths of the alpha-mu 8-13 Hz were distinguished, a different mu response to observation appeared for subjects with ASD in the upper sub-band over the sensorimotor cortex, whilst the lower sub-band responded similarly in the two groups. Source reconstructions demonstrated that this effect was related to a joint mu-suppression deficit over the occipito-parietal regions and an increase over the frontal regions. These findings suggest peculiarities in top-down response modulation in ASD and question the claim of a global dysfunction of the MNS in autism. This research also advocates for the use of finer grained analyses at both spatial and spectral levels for future directions in neurophysiological accounts of autism.
Collapse
Affiliation(s)
- Guillaume Dumas
- CNRS, UMR-7225, Paris, France; INSERM, U1227 Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France; INRIA Paris-Rocquencourt, ARAMIS team, Paris, France.
| | - Robert Soussignan
- Centre des Sciences du Goût et de l׳Alimentation, CNRS, UMR 6265, Université de Bourgogne-Inra, Dijon, France
| | - Laurent Hugueville
- CNRS, UMR-7225, Paris, France; INSERM, U1227 Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France; INRIA Paris-Rocquencourt, ARAMIS team, Paris, France
| | - Jacques Martinerie
- CNRS, UMR-7225, Paris, France; INSERM, U1227 Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France
| | - Jacqueline Nadel
- CNRS, UMR-7225, Paris, France; Institut du Cerveau et de la Moelle Epinière, Paris, France; Univ. Sorbonne UPMC, UMR S1127, Paris, France.
| |
Collapse
|
13
|
Interpreting EEG alpha activity. Neurosci Biobehav Rev 2014; 44:94-110. [DOI: 10.1016/j.neubiorev.2013.05.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 01/04/2023]
|
14
|
Sclocco R, Tana MG, Visani E, Gilioli I, Panzica F, Franceschetti S, Cerutti S, Bianchi AM. EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal. Front Hum Neurosci 2014; 8:186. [PMID: 24744720 PMCID: PMC3978331 DOI: 10.3389/fnhum.2014.00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022] Open
Abstract
In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD) fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that different EEG rhythms are independently related to changes in the BOLD signal: therefore, it would be also important to distinguish between the contributions of the different EEG rhythms to BOLD fluctuations when modeling the relationship between the two signals. Here we propose a method to perform EEG-informed fMRI analysis where the changes in the spectral profile are modeled, and, at the same time, the distinction between rhythms is preserved. We compared our model with two other frequency-dependent regressors modeling using simultaneous EEG-fMRI data from healthy subjects performing a motor task. Our results showed that the proposed method better captures the correlations between BOLD signal and EEG rhythms modulations, identifying task-related, well localized activated volumes. Furthermore, we showed that including among the regressors also EEG rhythms not primarily involved in the task enhances the performance of the analysis, even when only correlations with BOLD signal and specific EEG rhythms are explored.
Collapse
Affiliation(s)
- Roberta Sclocco
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| | - Maria G. Tana
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
- BIND - Behavioral Imaging and Neural Dynamics Center, University “G. d'Annunzio”Chieti, Italy
- Department of Medicine and Aging Science, University “G. d'Annunzio”Chieti, Italy
| | - Elisa Visani
- Fondazione IRCCS Istituto Neurologico “C. Besta”Milan, Italy
| | | | | | | | - Sergio Cerutti
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| | - Anna M. Bianchi
- Department of Electronics, Information and Bioengineering, Politecnico di MilanoMilan, Italy
| |
Collapse
|
15
|
Comprehensive Functional Mapping Scheme for Non-Invasive Primary Sensorimotor Cortex Mapping. Brain Topogr 2012; 26:511-23. [DOI: 10.1007/s10548-012-0271-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
16
|
Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts. Clin Neurophysiol 2012; 124:107-13. [PMID: 22832101 DOI: 10.1016/j.clinph.2012.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the viability of MEG source reconstruction in the presence of large interference due to orthodontic material. METHODS We recorded the magnetic fields following a simple hand movement and following electrical stimulation of the median nerve (somatosensory evoked field -SEF). These two tasks were performed twice, once with and once without artificial dental artefacts. Temporal Signal Space Separation (tSSS) was applied to spatially filter the data and source reconstruction was performed according to standard procedures for pre-surgical mapping of eloquent cortex, applying dipole fitting to the SEF data and beamforming to the hand movement data. RESULTS Comparing the data with braces to the data without braces, the observed distances between the activations following hand movement in the two conditions were on average 6.4 and 4.5 mm for the left and right hand, respectively, whereas the dipole localisation errors for the SEF were 4.1 and 5.4 mm, respectively. Without tSSS it was generally not possible to obtain reliable dipole fit or beamforming results when wearing braces. CONCLUSION We confirm that tSSS is a required and effective pre-processing step for data recorded with the Elekta-MEG system. Moreover, we have shown that even the presence of large interference from orthodontic material does not significantly alter the results from dipole localisation or beamformer analysis, provided the data are spatially filtered by tSSS. SIGNIFICANCE State-of-the-art signal processing techniques enable the use of MEG for pre-surgical evaluation in a much larger clinical population than previously thought possible.
Collapse
|
17
|
van Wijk BCM, Willemse RB, Peter Vandertop W, Daffertshofer A. Slowing of M1 oscillations in brain tumor patients in resting state and during movement. Clin Neurophysiol 2012; 123:2212-9. [PMID: 22608483 DOI: 10.1016/j.clinph.2012.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Brain tumors may severely disrupt the structure and function of the brain. While abnormal low-frequency activity can be found around tumor borders, disrupted structural connectivity may also impinge on neural activity in distant brain regions and other frequency bands. We investigated how glioma in patients with normal motor functioning affects activity in primary motor areas (M1). METHODS Using magnetoencephalography in 12 patients with unilateral glioma located around the central sulcus, we studied activity in bilateral M1s in resting state and during movement with focus on motor-related mu (8-12Hz) and beta rhythms (15-30Hz). Principal component analysis served to test for differences in spectral content. RESULTS A shift was found towards lower frequencies for M1 in the tumor hemisphere compared to M1 in the healthy hemisphere, caused by an increase in mu and decrease in beta power. This pattern was observed both in resting state and during movement. CONCLUSIONS This 'slowing' of brain oscillations in M1 resembles findings in patients with monohemispheric stroke and Parkinson's disease. A loss of intra-cortical connectivity may account for these findings, possibly supplemented by tumor-induced changes in neurotransmitter systems. SIGNIFICANCE Motor functioning may be unaffected by a spectral shift of mu and beta oscillations.
Collapse
|