1
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
2
|
Hsieh Y, Du J, Yang P. Repositioning VU-0365114 as a novel microtubule-destabilizing agent for treating cancer and overcoming drug resistance. Mol Oncol 2024; 18:386-414. [PMID: 37842807 PMCID: PMC10850822 DOI: 10.1002/1878-0261.13536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023] Open
Abstract
Microtubule-targeting agents represent one of the most successful classes of anticancer agents. However, the development of drug resistance and the appearance of adverse effects hamper their clinical implementation. Novel microtubule-targeting agents without such limitations are urgently needed. By employing a gene expression-based drug repositioning strategy, this study identifies VU-0365114, originally synthesized as a positive allosteric modulator of human muscarinic acetylcholine receptor M5 (M5 mAChR), as a novel type of tubulin inhibitor by destabilizing microtubules. VU-0365114 exhibits a broad-spectrum in vitro anticancer activity, especially in colorectal cancer cells. A tumor xenograft study in nude mice shows that VU-0365114 slowed the in vivo colorectal tumor growth. The anticancer activity of VU-0365114 is not related to its original target, M5 mAChR. In addition, VU-0365114 does not serve as a substrate of multidrug resistance (MDR) proteins, and thus, it can overcome MDR. Furthermore, a kinome analysis shows that VU-0365114 did not exhibit other significant off-target effects. Taken together, our study suggests that VU-0365114 primarily targets microtubules, offering potential for repurposing in cancer treatment, although more studies are needed before further drug development.
Collapse
Affiliation(s)
- Yao‐Yu Hsieh
- Division of Hematology and OncologyTaipei Medical University Shuang Ho HospitalNew Taipei CityTaiwan
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
- Taipei Cancer CenterTaipei Medical UniversityTaipeiTaiwan
- TMU and Affiliated Hospitals Pancreatic Cancer GroupsTaipei Medical UniversityTaipeiTaiwan
| | - Jia‐Ling Du
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityNew Taipei CityTaiwan
| | - Pei‐Ming Yang
- Taipei Cancer CenterTaipei Medical UniversityTaipeiTaiwan
- TMU and Affiliated Hospitals Pancreatic Cancer GroupsTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityNew Taipei CityTaiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and TechnologyTaipei Medical UniversityNew Taipei CityTaiwan
- TMU Research Center of Cancer Translational MedicineTaipeiTaiwan
- Cancer Center, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
3
|
ZHANG BIN, ZHAO JIANYI, WANG YONGZHI, XU HUA, GAO BO, ZHANG GUANGNING, HAN BIN, SONG GUOHONG, ZHANG JUNCHEN, MENG WEI. CHRM3 is a novel prognostic factor of poor prognosis and promotes glioblastoma progression via activation of oncogenic invasive growth factors. Oncol Res 2023; 31:917-927. [PMID: 37744266 PMCID: PMC10513942 DOI: 10.32604/or.2023.030425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/26/2023] [Indexed: 09/26/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive cancer of the brain and has a high mortality rate due to the lack of effective treatment strategy. Clarification of molecular mechanisms of GBM's characteristic invasive growth is urgently needed to improve the poor prognosis. Single-nuclear sequencing of primary and recurrent GBM samples revealed that levels of M3 muscarinic acetylcholine receptor (CHRM3) were significantly higher in the recurrent samples than in the primary samples. Moreover, immunohistochemical staining of an array of GBM samples showed that high levels of CHRM3 correlated with poor prognosis, consistent with The Cancer Genome Atlas database. Knockdown of CHRM3 inhibited GBM cell growth and invasion. An assay of orthotopic GBM animal model in vivo indicated that inhibition of CHRM3 significantly suppressed GBM progression with prolonged survival time. Transcriptome analysis revealed that CHRM3 knockdown significantly reduced an array of classic factors involved in cancer invasive growth, including MMP1/MMP3/MMP10/MMP12 and CXCL1/CXCL5/CXCL8. Taken together, CHRM3 is a novel and vital factor of GBM progression via regulation of multiple oncogenic genes and may serve as a new biomarker for prognosis and therapy of GBM patients.
Collapse
Affiliation(s)
- BIN ZHANG
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - JIANYI ZHAO
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - YONGZHI WANG
- Department of Neurosurgery, The City Peoples’ Hospital of Fuyang, Fuyang, China
| | - HUA XU
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - BO GAO
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - GUANGNING ZHANG
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - BIN HAN
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - GUOHONG SONG
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - JUNCHEN ZHANG
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - WEI MENG
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
4
|
Kanlı Z, Cabadak H, Aydın B. Potential antiproliferative and apoptotic effects of pilocarpine combined with TNF alpha in chronic myeloid leukemia cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02418-4. [PMID: 36781441 DOI: 10.1007/s00210-023-02418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
Pilocarpine is a selective M1/M3 agonist of muscarinic acetylcholine receptor subtypes. Muscarinic acetylcholine receptors are G protein-coupled receptors. These receptors are different drug targets. The aim of the present work was to investigate the effect of pilocarpine on the expression of M3 muscarinic acetylcholine receptor, the AChE activity, IL-8 release response, and proliferation in K562 cells, via muscarinic receptor activation. Human chronic myeloid leukemic cell cultures were incubated with drugs. Proliferation assays were performed by BrdU assay. Expression of M3 muscarinic acetylcholine receptor and apoptosis proteins such as bcl, bax, cyt C, and caspases was assessed with the semiquantitative Western blotting method. Pilocarpine inhibits chronic myeloid cell proliferation and M3 muscarinic acetylcholine receptor protein expression. Pilocarpine increases caspase-8 and -9 expression levels, upregulating the proapoptotic protein Bax and downregulating the expression levels of the antiapoptotic protein Bcl-2. The apoptotic activity of pilocarpine is associated with an increase in AChE activity. M3 muscarinic acetylcholine receptors can activate multiple signal transduction systems and mediate inhibitory effects on chronic myeloid K562 cell proliferation depending on the presence of 1% FBS conditions. This apoptotic effect of pilocarpine may be due to the concentration of pilocarpine and the increase in AChE level. Our results suggest that inhibition of cell proliferation by inducing apoptosis of pilocarpine in K562 cells may be one of the targets. M3 selective agonist may have therapeutic potential in chronic myeloid leukemia.
Collapse
Affiliation(s)
- Zehra Kanlı
- Institute of Health Sciences, Marmara University, Basibuyuk-Maltepe, Istanbul, 34854, Turkey
| | - Hülya Cabadak
- Marmara University, School of Medicine, Department of Biophysics, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey.
| | - Banu Aydın
- Marmara University, School of Medicine, Department of Biophysics, Basic Medical Sciences Building, Maltepe, Istanbul, 34854, Turkey
| |
Collapse
|
5
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
6
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
7
|
Curtis A, Yu Y, Carey M, Parfrey P, Yilmaz YE, Savas S. Examining SNP-SNP interactions and risk of clinical outcomes in colorectal cancer using multifactor dimensionality reduction based methods. Front Genet 2022; 13:902217. [PMID: 35991579 PMCID: PMC9385108 DOI: 10.3389/fgene.2022.902217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background: SNP interactions may explain the variable outcome risk among colorectal cancer patients. Examining SNP interactions is challenging, especially with large datasets. Multifactor Dimensionality Reduction (MDR)-based programs may address this problem.Objectives: 1) To compare two MDR-based programs for their utility; and 2) to apply these programs to sets of MMP and VEGF-family gene SNPs in order to examine their interactions in relation to colorectal cancer survival outcomes.Methods: This study applied two data reduction methods, Cox-MDR and GMDR 0.9, to study one to three way SNP interactions. Both programs were run using a 5-fold cross validation step and the top models were verified by permutation testing. Prognostic associations of the SNP interactions were verified using multivariable regression methods. Eight datasets, including SNPs from MMP family genes (n = 201) and seven sets of VEGF-family interaction networks (n = 1,517 SNPs) were examined.Results: ∼90 million potential interactions were examined. Analyses in the MMP and VEGF gene family datasets found several novel 1- to 3-way SNP interactions. These interactions were able to distinguish between the patients with different outcome risks (regression p-values 0.03–2.2E-09). The strongest association was detected for a 3-way interaction including CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460 variants.Conclusion: Our work demonstrates the utility of data reduction methods while identifying potential prognostic markers in colorectal cancer.
Collapse
Affiliation(s)
- Aaron Curtis
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yajun Yu
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Megan Carey
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Patrick Parfrey
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Yildiz E. Yilmaz
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Discipline of Medicine, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Department of Mathematics and Statistics, Faculty of Science, Memorial University, St. John’s, NL, Canada
| | - Sevtap Savas
- Discipline of Genetics, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- Discipline of Oncology, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
- *Correspondence: Sevtap Savas,
| |
Collapse
|
8
|
Calaf GM, Crispin LA, Muñoz JP, Aguayo F, Bleak TC. Muscarinic Receptors Associated with Cancer. Cancers (Basel) 2022; 14:cancers14092322. [PMID: 35565451 PMCID: PMC9100020 DOI: 10.3390/cancers14092322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Recently, cancer research has described the presence of the cholinergic machinery, specifically muscarinic receptors, in a wide variety of cancers due to their activation and signaling pathways associated with tumor progression and metastasis, providing a wide overview of their contribution to different cancer formation and development for new antitumor targets. This review focused on determining the molecular signatures associated with muscarinic receptors in breast and other cancers and the need for pharmacological, molecular, biochemical, technological, and clinical approaches to improve new therapeutic targets. Abstract Cancer has been considered the pathology of the century and factors such as the environment may play an important etiological role. The ability of muscarinic agonists to stimulate growth and muscarinic receptor antagonists to inhibit tumor growth has been demonstrated for breast, melanoma, lung, gastric, colon, pancreatic, ovarian, prostate, and brain cancer. This work aimed to study the correlation between epidermal growth factor receptors and cholinergic muscarinic receptors, the survival differences adjusted by the stage clinical factor, and the association between gene expression and immune infiltration level in breast, lung, stomach, colon, liver, prostate, and glioblastoma human cancers. Thus, targeting cholinergic muscarinic receptors appears to be an attractive therapeutic alternative due to the complex signaling pathways involved.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Correspondence:
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
9
|
Alizadeh M, Schledwitz A, Cheng K, Raufman JP. Mechanistic Clues Provided by Concurrent Changes in the Expression of Genes Encoding the M 1 Muscarinic Receptor, β-Catenin Signaling Proteins, and Downstream Targets in Adenocarcinomas of the Colon. Front Physiol 2022; 13:857563. [PMID: 35370785 PMCID: PMC8966224 DOI: 10.3389/fphys.2022.857563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Muscarinic receptors (MRs) in the G protein-coupled receptor superfamily are recipients and mediators of parasympathetic neural transmission within the central and enteric nervous systems. MR subtypes, M1R-M5R, encoded by CHRM1-CHRM5, expressed widely throughout the gastrointestinal (GI) tract, modulate a range of critical, highly regulated activities in healthy tissue, including secretion, motility, and cellular renewal. CHRM3/M3R overexpression in colon cancer is associated with increased cell proliferation, metastasis, and a worse outcome, but little is known about the role of the other four muscarinic receptor subtypes. To address this gap in knowledge, we queried the NCI Genomic Data Commons for publicly available TCGA-COAD samples collected from colon tissue. RNA-seq data were collected and processed for all available primary adenocarcinomas paired with adjacent normal colon. In this unbiased analysis, 78 paired samples were assessed using correlation coefficients and univariate linear regressions; gene ontologies were performed on a subset of correlated genes. We detected a consistent pattern of CHRM1 downregulation across colorectal adenocarcinomas. CHRM1 expression levels were positively associated with those for APC and SMAD4, and negatively associated with CTNNB1, the gene for β-catenin, and with coordinate changes in the expression of β-catenin target genes. These findings implicating CHRM1/M1R as an important deterrent of colon cancer development and progression warrant further exploration.
Collapse
Affiliation(s)
- Madeline Alizadeh
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kunrong Cheng
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States,VA Maryland Healthcare System, Baltimore, MD, United States,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States,*Correspondence: Jean-Pierre Raufman,
| |
Collapse
|
10
|
Bousali M, Papatheodoridis G, Paraskevis D, Karamitros T. Hepatitis B Virus DNA Integration, Chronic Infections and Hepatocellular Carcinoma. Microorganisms 2021; 9:1787. [PMID: 34442866 PMCID: PMC8398950 DOI: 10.3390/microorganisms9081787] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B Virus (HBV) is an Old World virus with a high mutation rate, which puts its origins in Africa alongside the origins of Homo sapiens, and is a member of the Hepadnaviridae family that is characterized by a unique viral replication cycle. It targets human hepatocytes and can lead to chronic HBV infection either after acute infection via horizontal transmission usually during infancy or childhood or via maternal-fetal transmission. HBV has been found in ~85% of HBV-related Hepatocellular Carcinomas (HCC), and it can integrate the whole or part of its genome into the host genomic DNA. The molecular mechanisms involved in the HBV DNA integration is not yet clear; thus, multiple models have been described with respect to either the relaxed-circular DNA (rcDNA) or the double-stranded linear DNA (dslDNA) of HBV. Various genes have been found to be affected by HBV DNA integration, including cell-proliferation-related genes, oncogenes and long non-coding RNA genes (lincRNAs). The present review summarizes the advances in the research of HBV DNA integration, focusing on the evolutionary and molecular side of the integration events along with the arising clinical aspects in the light of WHO's commitment to eliminate HBV and viral hepatitis by 2030.
Collapse
Affiliation(s)
- Maria Bousali
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - George Papatheodoridis
- Department of Gastroenterology, “Laiko” General Hospital of Athens, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece;
- Laboratory of Medical Microbiology, Department of Microbiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
11
|
Blockage of Cholinergic Signaling via Muscarinic Acetylcholine Receptor 3 Inhibits Tumor Growth in Human Colorectal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13133220. [PMID: 34203220 PMCID: PMC8267754 DOI: 10.3390/cancers13133220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 01/05/2023] Open
Abstract
Cholinergic signaling via the muscarinic M3 acetylcholine receptor (M3R) is involved in the development and progression of colorectal cancer (CRC). The present study aimed to analyze the blocking of M3R signaling in CRC using darifenacin, a selective M3R antagonist. Darifenacin effects were studied on HT-29 and SW480 CRC cells using MTT and BrdU assays, Western blotting and real time RT-PCR. In vivo, blocking of M3R was assessed in an orthotopic CRC xenograft BALB/cnu/nu mouse model. M3R expression in clinical tumor specimens was studied by immunohistochemistry on a tissue microarray of 585 CRC patients. In vitro, darifenacin decreased tumor cell survival and proliferation in a dose-dependent manner. Acetylcholine-induced p38, ERK1/2 and Akt signaling, and MMP-1 mRNA expression were decreased by darifenacin, as well as matrigel invasion of tumor cells. In mice, darifenacin reduced primary tumor volume and weight (p < 0.05), as well as liver metastases, compared to controls. High expression scores of M3R were found on 89.2% of clinical CRC samples and correlated with infiltrative tumor border and non-mucinous histology (p < 0.05). In conclusion, darifenacin inhibited components of tumor growth and progression in vitro and reduced tumor growth in vivo. Its target, M3R, was expressed on the majority of CRC. Thus, repurposing darifenacin may be an attractive addition to systemic tumor therapy in CRC patients expressing M3R.
Collapse
|
12
|
Ali O, Tolaymat M, Hu S, Xie G, Raufman JP. Overcoming Obstacles to Targeting Muscarinic Receptor Signaling in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22020716. [PMID: 33450835 PMCID: PMC7828259 DOI: 10.3390/ijms22020716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/05/2023] Open
Abstract
Despite great advances in our understanding of the pathobiology of colorectal cancer and the genetic and environmental factors that mitigate its onset and progression, a paucity of effective treatments persists. The five-year survival for advanced, stage IV disease remains substantially less than 20%. This review examines a relatively untapped reservoir of potential therapies to target muscarinic receptor expression, activation, and signaling in colorectal cancer. Most colorectal cancers overexpress M3 muscarinic receptors (M3R), and both in vitro and in vivo studies have shown that activating these receptors stimulates cellular programs that result in colon cancer growth, survival, and spread. In vivo studies using mouse models of intestinal neoplasia have shown that using either genetic or pharmacological approaches to block M3R expression and activation, respectively, attenuates the development and progression of colon cancer. Moreover, both in vitro and in vivo studies have shown that blocking the activity of matrix metalloproteinases (MMPs) that are induced selectively by M3R activation, i.e., MMP1 and MMP7, also impedes colon cancer growth and progression. Nonetheless, the widespread expression of muscarinic receptors and MMPs and their importance for many cellular functions raises important concerns about off-target effects and the safety of employing similar strategies in humans. As we highlight in this review, highly selective approaches can overcome these obstacles and permit clinicians to exploit the reliance of colon cancer cells on muscarinic receptors and their downstream signal transduction pathways for therapeutic purposes.
Collapse
Affiliation(s)
- Osman Ali
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
| | - Mazen Tolaymat
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
| | - Shien Hu
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
| | - Guofeng Xie
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MA 21201, USA; (O.A.); (M.T.); (S.H.); (G.X.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MA 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MA 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MA 21201, USA
- Correspondence: ; Tel.: +1-410-328-8728
| |
Collapse
|
13
|
Praveen MA, Parvathy KRK, Patra S, Khan I, Natarajan P, Balasubramanian P. Cytotoxic and pharmacokinetic studies of Indian seaweed polysaccharides for formulating raindrop synbiotic candy. Int J Biol Macromol 2020; 154:557-566. [PMID: 32173429 DOI: 10.1016/j.ijbiomac.2020.03.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 01/14/2023]
Abstract
Gut microbiome evidenced as the assembling mode of action facilitates the relationship of environmental factors (such as diet and lifestyle) with colorectal cancer. The cytotoxic and anticancer studies of the enzymatically extracted polysaccharides from selected Indian seaweeds (such as S. wightii, E. compressa, and A. spicifera) on Raw 264.7 macrophage and HT-29 human colon cancer cell line were investigated. E. compressa showed nitric oxide production up to a concentration of 6.99 ± 0.05 μM. The polysaccharide extract of seaweed (PES), A. spicifera (100 μg/ml) had shown the highest in-vitro cytotoxicity effect on HT-29 cells up to 52.13 ± 1.4%. Absorption, distribution, metabolism and excretion (ADME) predictions were performed for exploring the possibility of anti-cancer drug development. The formulated synbiotic candy exhibited post storage survivability of probiotic species L. plantarum NCIM 2083 up to 107 CFU/ml until three weeks and it could be an aesthetic functional food for treating colon cancer.
Collapse
Affiliation(s)
- M Ajanth Praveen
- Dept. of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769008, India
| | - K R Karthika Parvathy
- Food Microbiology and Bioprocess Laboratory, Dept. of Life Science, National Institute of Technology Rourkela, 769008, India.
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Dept. of Life Science, National Institute of Technology Rourkela, 769008, India
| | - Imran Khan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Pradeep Natarajan
- Dept. of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769008, India
| | - P Balasubramanian
- Dept. of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, 769008, India.
| |
Collapse
|
14
|
M2 Receptor Activation Counteracts the Glioblastoma Cancer Stem Cell Response to Hypoxia Condition. Int J Mol Sci 2020; 21:ijms21051700. [PMID: 32131421 PMCID: PMC7084794 DOI: 10.3390/ijms21051700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor. Hypoxic condition is a predominant feature of the GBM contributing to tumor growth and resistance to conventional therapies. Hence, the identification of drugs able to impair GBM malignancy and aggressiveness is considered of great clinical relevance. Previously, we demonstrated that the activation of M2 muscarinic receptors, through the agonist arecaidine propargyl ester (Ape), arrests cell proliferation in GBM cancer stem cells (GSCs). In the present work, we have characterized the response of GSCs to hypoxic condition showing an upregulation of hypoxia-inducible factors and factors involved in the regulation of GSCs survival and proliferation. Ape treatment in hypoxic conditions is however able to inhibit cell cycle progression, causing a significant increase of aberrant mitosis with consequent decreased cell survival. Additionally, qRT-PCR analysis suggest that Ape downregulates the expression of stemness markers and miR-210 levels, one of the main regulators of the responses to hypoxic condition in different tumor types. Our data demonstrate that Ape impairs the GSCs proliferation and survival also in hypoxic condition, negatively modulating the adaptive response of GSCs to hypoxia.
Collapse
|
15
|
Chen S, Liao B, Jin X, Wei T, He Q, Lin Y, Ai J, Gong L, Li H, Wang K. M
3
receptor modulates extracellular matrix synthesis via ERK1/2 signaling pathway in human bladder smooth muscle cells. J Cell Biochem 2020; 121:4496-4504. [PMID: 32065420 DOI: 10.1002/jcb.29688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/14/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Shulian Chen
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
- Department of Urology Affiliated Hospital of Zunyi Medical University Zunyi Guizhou China
| | - Banghua Liao
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Xi Jin
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Tangqiang Wei
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Qing He
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Yifei Lin
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Jianzhong Ai
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Lina Gong
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Hong Li
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| | - Kunjie Wang
- Department of Urology, Laboratory of Reconstructive Urology, Institute of Urology West China Hospital, Sichuan University Chengdu Sichuan China
| |
Collapse
|
16
|
Lan L, Wang H, Yang R, Liu F, Bi Q, Wang S, Wei X, Yan H, Su R. R2-8018 reduces the proliferation and migration of non-small cell lung cancer cells by disturbing transactivation between M3R and EGFR. Life Sci 2019; 234:116742. [PMID: 31401315 DOI: 10.1016/j.lfs.2019.116742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
Abstract
AIMS The M3 muscarinic acetylcholine receptor (M3R) is a G protein-coupled receptor that is expressed in cases of non-small cell lung cancer (NSCLC). Previous studies demonstrated that M3R antagonists reduce the proliferation of NSCLC. However, how antagonists inhibit the NSCLC proliferation and migration is still little known. This study aims to investigate the mechanism of M3R involved in the growth of NSCLC. MAIN METHODS The CRISPR/Cas9 was used to knock out (KO) the M3R gene. A real-time cell analyzer (RTCA) was used to record the proliferation of NSCLC cells. The migration and cell cycle of NSCLC cells were evaluated with scratch test and flow cytometry (FCM), respectively. Antibody microarray analysis was performed to detect the expression of proteins after antagonizing M3R and knocking out of M3R, subsequently some of these important proteins were verified by western blot. KEY FINDINGS The proliferation and migration of NSCLC cells were inhibited by M3R antagonist R2-8018 and knocking out of M3R. Antagonism or knocking out of M3R reduced the phosphorylation of EGFR. Moreover, c-Src and β-arrestin-1 are involved in the mechanism of how the inhibition of M3R affects EGFR in NSCLC. Further study demonstrated that PI3K/AKT and MEK/ERK signal pathways are involved in M3R-induced EGFR transactivation in NSCLC, and the molecules involved in the cell cycle progression and migration of NSCLC cells were identified. SIGNIFICANCE This further understanding of the relationship between M3R and NSCLC facilitates the design of therapeutic strategy with M3R antagonist as an adjuvant drug for NSCLC treatment.
Collapse
Affiliation(s)
- Liting Lan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Hua Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; 69242 Force Health Center, No. 1, Hongxing Road, Turpan, Xinjiang 838000, China
| | - Rui Yang
- National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Fengqi Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Medical Laboratory, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, 046000, China
| | - Qingshang Bi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Department of Medical Laboratory, Changzhi Medical College, No.161 Jiefang East Street, Changzhi, Shanxi, 046000, China
| | - Shiqi Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China; Center for Drug Evaluation, NMPA. No. 128, Jianguo Road, Chaoyang District, Beijing 100022, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing 100850, China.
| |
Collapse
|
17
|
Role of Muscarinic Acetylcholine Signaling in Gastrointestinal Cancers. Biomedicines 2019; 7:biomedicines7030058. [PMID: 31405140 PMCID: PMC6783861 DOI: 10.3390/biomedicines7030058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
In the tumor microenvironment, various stromal and immune cells accumulate and interact with cancer cells to contribute to tumor progression. Among stromal players, nerves have recently been recognized as key regulators of tumor growth. More neurotransmitters, such as catecholamines and acetylcholine (ACh), are present in tumors, as the cells that secrete neurotransmitters accumulate by the release of neurotrophic factors from cancer cells. In this short review, we focus on the role of nerve signaling in gastrointestinal (GI) cancers. Given that muscarinic acetylcholine receptor signaling seems to be a dominant regulator of GI stem cells and cancers, we review the function and mechanism of the muscarinic ACh pathway as a regulator of GI cancer progression. Accumulating evidence suggests that ACh, which is secreted from nerves and tuft cells, stimulates GI epithelial stem cells and contributes to cancer progression via muscarinic receptors.
Collapse
|
18
|
Cerles O, Gonçalves TC, Chouzenoux S, Benoit E, Schmitt A, Bennett Saidu NE, Kavian N, Chéreau C, Gobeaux C, Weill B, Coriat R, Nicco C, Batteux F. Preventive action of benztropine on platinum-induced peripheral neuropathies and tumor growth. Acta Neuropathol Commun 2019; 7:9. [PMID: 30657060 PMCID: PMC6337872 DOI: 10.1186/s40478-019-0657-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous cholinergic system plays a key role in neuronal cells, by suppressing neurite outgrowth and myelination and, in some cancer cells, favoring tumor growth. Platinum compounds are widely used as part of first line conventional cancer chemotherapy; their efficacy is however limited by peripheral neuropathy as a major side-effect. In a multiple sclerosis mouse model, benztropine, that also acts as an anti-histamine and a dopamine re-uptake inhibitor, induced the differentiation of oligodendrocytes through M1 and M3 muscarinic receptors and enhanced re-myelination. We have evaluated whether benztropine can increase anti-tumoral efficacy of oxaliplatin, while preventing its neurotoxicity.We showed that benztropine improves acute and chronic clinical symptoms of oxaliplatin-induced peripheral neuropathies in mice. Sensory alterations detected by electrophysiology in oxaliplatin-treated mice were consistent with a decreased nerve conduction velocity and membrane hyperexcitability due to alterations in the density and/or functioning of both sodium and potassium channels, confirmed by action potential analysis from ex-vivo cultures of mouse dorsal root ganglion sensory neurons using whole-cell patch-clamp. These alterations were all prevented by benztropine. In oxaliplatin-treated mice, MBP expression, confocal and electronic microscopy of the sciatic nerves revealed a demyelination and confirmed the alteration of the myelinated axons morphology when compared to animals injected with oxaliplatin plus benztropine. Benztropine also prevented the decrease in neuronal density in the paws of mice injected with oxaliplatin. The neuroprotection conferred by benztropine against chemotherapeutic drugs was associated with a lower expression of inflammatory cytokines and extended to diabetic-induced peripheral neuropathy in mice.Mice receiving benztropine alone presented a lower tumor growth when compared to untreated animals and synergized the anti-tumoral effect of oxaliplatin, a phenomenon explained at least in part by benztropine-induced ROS imbalance in tumor cells.This report shows that blocking muscarinic receptors with benztropine prevents peripheral neuropathies and increases the therapeutic index of oxaliplatin. These results can be rapidly transposable to patients as benztropine is currently indicated in Parkinson's disease in the United States.
Collapse
|