1
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. Novel and potential future therapeutic options in Sjögren's syndrome. Heliyon 2024; 10:e38803. [PMID: 39430463 PMCID: PMC11490770 DOI: 10.1016/j.heliyon.2024.e38803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease affecting the exocrine glands and can lead to various systemic symptoms impacting multiple organs. Despite its common occurrence, treatment options for SS have been largely limited, primarily focusing on alleviating symptoms rather than addressing the underlying autoimmune causes. A shift towards personalized medicine leads to the development of new therapeutic strategies aimed at targeting specific molecular pathways implicated in SS. Innovations in biologics are paving the way for inhibiting particular cytokines or cell surface molecules directly involved in the autoimmune mechanism. Furthermore, advancements in regenerative medicine, including the promising field of stem cell therapy, offer the potential for restoring or replacing the impaired salivary and lacrimal glands, providing hope for a more permanent resolution to this condition. This review encompasses cutting-edge treatment strategies for SS, spanning clinical and preclinical drugs to the latest treatment technology. Such advancements promise to drive targeted therapy development and inspire innovative ideas for treatment paradigms in SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
2
|
Chen J, Zhang A, Nie A, Zuo X, Zhang L, Jiao Y, Wang L, Yang Y, Liu K, Xue X, Zhuang Y, Meng Y, Yang JH. Multi-omics analysis to reveal the synergistic mechanism underlying the multiple ingredients of Stephania tetrandra extract on rheumatoid arthritis through the PI3K/Akt signaling pathway. Front Pharmacol 2024; 15:1447283. [PMID: 39221139 PMCID: PMC11361992 DOI: 10.3389/fphar.2024.1447283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Stephania tetrandra has been used for treating rheumatic diseases for thousands of years in rural areas of China. Several studies have found that tetrandrine and fangchinoline can inactivate the PI3K/Akt signaling pathway by reducing the expression and phosphorylation of AKT. However, the mechanism underlying the therapeutic actions of S. tetrandra on RA is not well known. Methods: In this study, we determined the molecular mechanism of the therapeutic effects of the multiple ingredients of S. tetrandra extract (STE) on collagen-induced arthritic (CIA) rats by integrating pharmacometabolomics, proteomics, and PTMomics. Results: In the multi-omics joint analysis, first, the expression signatures of proteins, PTMs, metabolites, and STE ingredients were profiled in CIA rats PBMCs that underwent STE treatment. Bioinformatics analysis were subsequently probed that STE mainly regulated tryptophan metabolism, inflammatory response, and cell adhesion pathways in CIA rats. The interrelated pathways were further constructed, and the findings revealed that STE attenuated the inflammatory response and proliferation of PBMCs in CIA rats by mediating the key targets of the PI3K/Akt pathway, including Hint1, ACP1, FGR, HSP90@157W + dioxidation, and Prkca@220N + 845.4540 Da. The rheumatic functions of Hint1 and ACP1 were further confirmed by applying a transcriptomic data of RA patients who clinically received abatacept therapy. Furthermore, a cross-ome correlation analysis was performed and major in vivo ingredients of STE, including coclaurine-N-glucuronide, Me,coclaurine-O-glc, N-gluA-schefferine, corydamine, corypamine, tetrandrine, and fangchiniline, were found to act on these targerts to inactivate the PI3K/Akt pathway. Conclusion: These results elucidated the molecular mechanism by which the ingredients of STE mediate the expression of the key targets in the PI3K/Akt pathway, leading to anti-rheumatic functions. The findings of this study provided new insights into the synergistic effect of STE against arthritis in rats.
Collapse
Affiliation(s)
- Jinfeng Chen
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - An Zhang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Anzheng Nie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxiao Zuo
- Radiotherapy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yuxue Jiao
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Lulu Wang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yang Yang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Kun Liu
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xinli Xue
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yuanyuan Zhuang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yansha Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Hua Yang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Shao Y, Hu J, Wang S, Jiang H, Miao G, Li C, Zhang J, Xu Y. Identification of Fangji Huangqi Tang as a potential herbal formula for Sjogren syndrome treatment via network pharmacology and experimental validation. Chem Biol Drug Des 2023; 102:1435-1447. [PMID: 37640538 DOI: 10.1111/cbdd.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Fangji Huangqi Tang (FHT) is a well-known Chinese herbal formula that is prescribed as treatment for rheumatoid diseases. In this study, we aimed to investigate the potential therapeutic targets, efficacy, and safety of FHT in the treatment of Sjogren's syndrome (SS). The Gene Expression Omnibus (GEO) database was used to screen differentially expressed genes (DEGs) in SS. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the potential biological functions of the DEGs. Subsequently, an FHT-herb-active compound-target network was constructed to identify the relationship between the active compounds in FHT and the related targets. Then, enrichment analysis involving the DEGs and protein-protein interaction (PPI) network analysis were performed to analyze the biological functions of potential targets and screen hub genes. Further, molecular docking was employed to verify the binding affinity between the active compounds and the hub targets, and in vivo experiments involving NOD/LtJ mice were conducted to verify the therapeutic effects of FHT on SS-like symptoms. Finally, inhibition of PIK3CK/Akt pathway by FHT was validated by WB and rt-qPCR. A total of 1836 DEGs were identified in SS based on the GSE159574 dataset, and 114 targets of the active compounds in FHT were screened. Further, via network pharmacology analysis and molecular docking, six active compounds and five hub targets were obtained, and enrichment analysis showed that the anti-SS effect of FHT was predominantly associated with immune cells, such as T cells and neutrophils. In vivo, FHT effectively reduced lymphocyte infiltration foci, increased saliva flow rate, and inhibited increases in the levels of SS-related autoantibodies (anti-SSA and anti-SSB). Furthermore, the biosafety of FHT was verified via the serological examination of liver and kidney function. WB and rt-qPCR analysis confirmed that FHT could inhibit the expression of PIK3CG and the activation of PIK3CG/Akt pathway. Via network pharmacological analysis, molecular docking, and in vivo verification, we demonstrated the multicomponent and multitarget characteristics of FHT in SS treatment, thereby providing novel insights into the pathogenesis of SS and the therapeutic targets of FHT for SS.
Collapse
Affiliation(s)
- Yanxiong Shao
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Hu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shaohai Wang
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Jiang
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guojun Miao
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chaoran Li
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Zhang
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yubo Xu
- Department of Stomatology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren's syndrome: Review and update. Front Immunol 2023; 14:1127417. [PMID: 36817420 PMCID: PMC9932901 DOI: 10.3389/fimmu.2023.1127417] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease accompanied by multiple lesions. The main manifestations include dryness of the mouth and eyes, along with systemic complications (e.g., pulmonary disease, kidney injury, and lymphoma). In this review, we highlight that IFNs, Th17 cell-related cytokines (IL-17 and IL-23), and B cell-related cytokines (TNF and BAFF) are crucial for the pathogenesis of SS. We also summarize the advances in experimental treatment strategies, including targeting Treg/Th17, mesenchymal stem cell treatment, targeting BAFF, inhibiting JAK pathway, et al. Similar to that of SLE, RA, and MS, biotherapeutic strategies of SS consist of neutralizing antibodies and inflammation-related receptor blockers targeting proinflammatory signaling pathways. However, clinical research on SS therapy is comparatively rare. Moreover, the differences in the curative effects of immunotherapies among SS and other autoimmune diseases are not fully understood. We emphasize that targeted drugs, low-side-effect drugs, and combination therapies should be the focus of future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Chen H, Chen S, Chen C, Li A, Wei Z. Leucine zipper downregulated in cancer 1 may serve as a favorable prognostic biomarker by influencing proliferation, colony formation, cell cycle, apoptosis, and migration ability in hepatocellular carcinoma. Front Genet 2022; 13:900951. [PMID: 35957693 PMCID: PMC9358146 DOI: 10.3389/fgene.2022.900951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Aims: Leucine zipper downregulated in cancer 1 (LDOC1) inhibits tumor growth in several cancers. However, the expression and function of LDOC1 in hepatocellular carcinoma (HCC) remain unknown. In this study, we aimed to investigate how LDOC1 influenced tumor progression and the biological functions of HCC. Methods: The transcription levels of LDOC1 were determined using the GEPIA and UALCAN online databases and a real-time polymerase chain reaction. Western blot and immunohistochemistry were used to validate the protein levels of LDOC1. The online Kaplan-Meier Plotter was applied for survival analysis. Then lentivirus transfection was used to construct LDOC1 exogenous overexpression cell lines. Proliferation, clone formation, cell cycle, apoptosis, and migration assays were performed with the LDOC1-upregulated Huh7 and Hep3B cell lines. The phosphorylated and total levels of AKT and mTOR were determined using a Western blot to explore the potential molecular mechanism of LDOC1. Results: In the GEPIA and UALCAN analyses, LDOC1 was lowly expressed in tumors, had high expression in normal tissue samples (p < 0.05), and negatively correlated with tumor grade progression. The down-regulation of LDOC1 in HCC was validated with real-time polymerase chain reaction, Western blot, and immunohistochemistry (all p < 0.05). LDOC1 transcription levels were negatively associated with overall, progression-free, recurrence-free, and disease-specific survival (all p < 0.05). The functional experiments suggested that the overexpression of LDOC1 contributed to increased G1 and G2 stages in Huh7, while increased G2 stage in Hep3B, and decreased cell proliferation, clone formation, and migration, as well as increased the apoptosis rate compared with the control group (all p < 0.05). Furthermore, LDOC1 up-regulation reduced the p-AKT/AKT and p-mTOR/mTOR, which indicates an inactivation of the AKT/mTOR pathway. Conclusion: The tumor-suppressor LDOC1 varied in HCC and non-HCC tissues, which can serve as a candidate prognostic biomarker. LDOC1 influenced survival by affecting proliferation, colony formation, cell cycle, apoptosis, and migration ability, which might be attributed to the AKT/mTOR inhibition in HCC.
Collapse
Affiliation(s)
- Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Siyuan Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Chen Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Aifeng Li
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Zhixiao Wei
- Department of Nuclear Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
- *Correspondence: Zhixiao Wei,
| |
Collapse
|