1
|
Hu G, Tian B, Han S, Wang S, Hacker M, Li X, Bai X. Prognostic evaluation in recurrent glioma through 11C-Choline PET/CT imaging. EJNMMI Res 2024; 14:84. [PMID: 39266803 PMCID: PMC11393258 DOI: 10.1186/s13550-024-01146-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Affiliation(s)
- Geng Hu
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Bin Tian
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Shaoli Han
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Shiwei Wang
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic, Capital Medical University, Tumor Research Institute, Beijing, China.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | - Xia Bai
- Department of Nuclear Medicine, The Affliated Hospital of Inner Mongolia Medical University, #1 Tongdao North Street.Huimin District, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| |
Collapse
|
2
|
Zhou JH, Wang C, Yang D, Wu YX, Feng DY, Qin H, Wang JL, Wei MH. Clinical features and treatment of apoplectic intratumoral hemorrhage of glioma. BMC Neurol 2024; 24:254. [PMID: 39048961 PMCID: PMC11267862 DOI: 10.1186/s12883-024-03753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE The primary objective of this study was to explore the clinical characteristics of apoplectic intratumoral hemorrhage in gliomas and offer insights for improving the diagnosis and treatment of this disease. METHODS We analyzed the clinical data of 35 patients with glioma and hemorrhage. There were eight cases of multiple cerebral lobe involvement, and 22 cases involved a single lobe. Twenty-one patients had a preoperative Glasgow Coma Scale (GCS) score of ≥ 9 and had a craniotomy with tumor resection and hematoma evacuation after undergoing preoperative preparation. A total of 14 patients with GCS < 9, including one with thalamic hemorrhage breaking into the ventricles and acute obstructive hydrocephalus, underwent craniotomy for tumor resection after external ventricular drainage (EVD). One patient had combined thrombocytopenia, which was surgically treated after platelet levels were normalized through transfusion. The remaining 12 patients received immediate intervention in the form of craniotomy hematoma evacuation and tumor resection. RESULTS We performed subtotal resection on three tumors of thalamic origin and two tumors of corpus callosum origin, but we were able to successfully resect all the tumors in other locations that were gross total resection Pathology results showed that 71.43% of cases accounted for WHO-grade 4 tumors. Among the 21 patients with a GCS score of ≥ 9, two died perioperatively. Fourteen patients had a GCS score < 9, of which eight patients died perioperatively. CONCLUSIONS Patients with a preoperative GCS score ≥ 9 who underwent subemergency surgery and received aggressive treatment showed a reasonable prognosis. We found their long-term outcomes to be correlated with the pathology findings. On the other hand, patients with a preoperative GCS score < 9 required emergency treatment and had a high perioperative mortality rate.
Collapse
Affiliation(s)
- Jia-Hua Zhou
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China
| | - Chao Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China
| | - Di Yang
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shanxi, 710038, China
| | - Ying-Xi Wu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China
| | - Da-Yun Feng
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China
| | - Huaizhou Qin
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China
| | - Ju-Lei Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China.
| | - Ming-Hao Wei
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, Shanxi, 710038, China.
| |
Collapse
|
3
|
Zhang-Yin JT, Girard A, Bertaux M. What Does PET Imaging Bring to Neuro-Oncology in 2022? A Review. Cancers (Basel) 2022; 14:cancers14040879. [PMID: 35205625 PMCID: PMC8870476 DOI: 10.3390/cancers14040879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Positron emission tomography (PET) imaging is increasingly used to supplement MRI in the management of patient with brain tumors. In this article, we provide a review of the current place and perspectives of PET imaging for the diagnosis and follow-up of from primary brain tumors such as gliomas, meningiomas and central nervous system lymphomas, as well as brain metastases. Different PET radiotracers targeting different biological processes are used to accurately depict these brain tumors and provide unique metabolic and biologic information. Radiolabeled amino acids such as [18F]FDOPA or [18F]FET are used for imaging of gliomas while both [18F]FDG and amino acids can be used for brain metastases. Meningiomas can be seen with a high contrast using radiolabeled ligands of somatostatin receptors, which they usually carry. Unconventional tracers that allow the study of other biological processes such as cell proliferation, hypoxia, or neo-angiogenesis are currently being studied for brain tumors imaging. Abstract PET imaging is being increasingly used to supplement MRI in the clinical management of brain tumors. The main radiotracers implemented in clinical practice include [18F]FDG, radiolabeled amino acids ([11C]MET, [18F]FDOPA, [18F]FET) and [68Ga]Ga-DOTA-SSTR, targeting glucose metabolism, L-amino-acid transport and somatostatin receptors expression, respectively. This review aims at addressing the current place and perspectives of brain PET imaging for patients who suffer from primary or secondary brain tumors, at diagnosis and during follow-up. A special focus is given to the following: radiolabeled amino acids PET imaging for tumor characterization and follow-up in gliomas; the role of amino acid PET and [18F]FDG PET for detecting brain metastases recurrence; [68Ga]Ga-DOTA-SSTR PET for guiding treatment in meningioma and particularly before targeted radiotherapy.
Collapse
Affiliation(s)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
4
|
Diagnosis of Glioblastoma by Immuno-Positron Emission Tomography. Cancers (Basel) 2021; 14:cancers14010074. [PMID: 35008238 PMCID: PMC8750680 DOI: 10.3390/cancers14010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Neuroimaging has transformed the way brain tumors are diagnosed and treated. Although different non-invasive modalities provide very helpful information, in some situations, they present a limited value. By merging the specificity of antibodies with the resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry”, like a “virtual biopsy”. This review provides and focuses on immuno-PET applications and future perspectives of this promising imaging approach for glioblastoma. Abstract Neuroimaging has transformed neuro-oncology and the way that glioblastoma is diagnosed and treated. Magnetic Resonance Imaging (MRI) is the most widely used non-invasive technique in the primary diagnosis of glioblastoma. Although MRI provides very powerful anatomical information, it has proven to be of limited value for diagnosing glioblastomas in some situations. The final diagnosis requires a brain biopsy that may not depict the high intratumoral heterogeneity present in this tumor type. The revolution in “cancer-omics” is transforming the molecular classification of gliomas. However, many of the clinically relevant alterations revealed by these studies have not yet been integrated into the clinical management of patients, in part due to the lack of non-invasive biomarker-based imaging tools. An innovative option for biomarker identification in vivo is termed “immunotargeted imaging”. By merging the high target specificity of antibodies with the high spatial resolution, sensitivity, and quantitative capabilities of positron emission tomography (PET), “Immuno-PET” allows us to conduct the non-invasive diagnosis and monitoring of patients over time using antibody-based probes as an in vivo, integrated, quantifiable, 3D, full-body “immunohistochemistry” in patients. This review provides the state of the art of immuno-PET applications and future perspectives on this imaging approach for glioblastoma.
Collapse
|
5
|
Bolcaen J, Descamps B, Deblaere K, De Vos F, Boterberg T, Hallaert G, Van den Broecke C, Vanhove C, Goethals I. Assessment of the effect of therapy in a rat model of glioblastoma using [18F]FDG and [18F]FCho PET compared to contrast-enhanced MRI. PLoS One 2021; 16:e0248193. [PMID: 33667282 PMCID: PMC7935304 DOI: 10.1371/journal.pone.0248193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Objective We investigated the potential of [18F]fluorodeoxyglucose ([18F]FDG) and [18F]Fluoromethylcholine ([18F]FCho) PET, compared to contrast-enhanced MRI, for the early detection of treatment response in F98 glioblastoma (GB) rats. Methods When GB was confirmed on T2- and contrast-enhanced T1-weighted MRI, animals were randomized into a treatment group (n = 5) receiving MRI-guided 3D conformal arc micro-irradiation (20 Gy) with concomitant temozolomide, and a sham group (n = 5). Effect of treatment was evaluated by MRI and [18F]FDG PET on day 2, 5, 9 and 12 post-treatment and [18F]FCho PET on day 1, 6, 8 and 13 post-treatment. The metabolic tumor volume (MTV) was calculated using a semi-automatic thresholding method and the average tracer uptake within the MTV was converted to a standard uptake value (SUV). Results To detect treatment response, we found that for [18F]FDG PET (SUVmean x MTV) is superior to MTV only. Using (SUVmean x MTV), [18F]FDG PET detects treatment effect starting as soon as day 5 post-therapy, comparable to contrast-enhanced MRI. Importantly, [18F]FDG PET at delayed time intervals (240 min p.i.) was able to detect the treatment effect earlier, starting at day 2 post-irradiation. No significant differences were found at any time point for both the MTV and (SUVmean x MTV) of [18F]FCho PET. Conclusions Both MRI and particularly delayed [18F]FDG PET were able to detect early treatment responses in GB rats, whereas, in this study this was not possible using [18F]FCho PET. Further comparative studies should corroborate these results and should also include (different) amino acid PET tracers.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, Department of Nuclear Medicine, National Research Foundation iThemba LABS, Faure, South Africa
- * E-mail:
| | - Benedicte Descamps
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University Hospital, Ghent, Belgium
| | - Filip De Vos
- Department of Radiopharmacy, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Giorgio Hallaert
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | | | - Christian Vanhove
- Department of Electronics and Information Systems, IBiTech-MEDISIP, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
6
|
Shankar A, Bomanji J, Hyare H. Hybrid PET-MRI Imaging in Paediatric and TYA Brain Tumours: Clinical Applications and Challenges. J Pers Med 2020; 10:jpm10040218. [PMID: 33182433 PMCID: PMC7711629 DOI: 10.3390/jpm10040218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Standard magnetic resonance imaging (MRI) remains the gold standard for brain tumour imaging in paediatric and teenage and young adult (TYA) patients. Combining positron emission tomography (PET) with MRI offers an opportunity to improve diagnostic accuracy. (2) Method: Our single-centre experience of 18F-fluorocholine (FCho) and 18fluoro-L-phenylalanine (FDOPA) PET–MRI in paediatric/TYA neuro-oncology patients is presented. (3) Results: Hybrid PET–MRI shows promise in the evaluation of gliomas and germ cell tumours in (i) assessing early treatment response and (ii) discriminating tumour from treatment-related changes. (4) Conclusions: Combined PET–MRI shows promise for improved diagnostic and therapeutic assessment in paediatric and TYA brain tumours.
Collapse
Affiliation(s)
- Ananth Shankar
- Children and Young People’s Cancer Services, University College London hospitals NHS Foundation Trust, London NW1 2PG, UK
- Correspondence: ; Tel.: +44-20-3447-9950
| | - Jamshed Bomanji
- Department of Nuclear Medicine, University College London hospitals NHS Foundation Trust, London NW1 2PG, UK;
| | - Harpreet Hyare
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK;
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
7
|
Brain PET/CT using prostate cancer radiopharmaceutical agents in the evaluation of gliomas. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00389-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
|