1
|
Lebeau PF, Wassef H, Byun JH, Platko K, Ason B, Jackson S, Dobroff J, Shetterly S, Richards WG, Al-Hashimi AA, Won KD, Mbikay M, Prat A, Tang A, Paré G, Pasqualini R, Seidah NG, Arap W, Chrétien M, Austin RC. The loss-of-function PCSK9Q152H variant increases ER chaperones GRP78 and GRP94 and protects against liver injury. J Clin Invest 2021; 131:128650. [PMID: 33211673 DOI: 10.1172/jci128650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Individuals harboring the loss-of-function (LOF) proprotein convertase subtilisin/kexin type 9 Gln152His variation (PCSK9Q152H) have low circulating low-density lipoprotein cholesterol levels and are therefore protected against cardiovascular disease (CVD). This uncleavable form of proPCSK9, however, is retained in the endoplasmic reticulum (ER) of liver hepatocytes, where it would be expected to contribute to ER storage disease (ERSD), a heritable condition known to cause systemic ER stress and liver injury. Here, we examined liver function in members of several French-Canadian families known to carry the PCSK9Q152H variation. We report that PCSK9Q152H carriers exhibited marked hypocholesterolemia and normal liver function despite their lifelong state of ER PCSK9 retention. Mechanistically, hepatic overexpression of PCSK9Q152H using adeno-associated viruses in male mice greatly increased the stability of key ER stress-response chaperones in liver hepatocytes and unexpectedly protected against ER stress and liver injury rather than inducing them. Our findings show that ER retention of PCSK9 not only reduced CVD risk in patients but may also protect against ERSD and other ER stress-driven conditions of the liver. In summary, we have uncovered a cochaperone function for PCSK9Q152H that explains its hepatoprotective effects and generated a translational mouse model for further mechanistic insights into this clinically relevant LOF PCSK9 variant.
Collapse
Affiliation(s)
- Paul F Lebeau
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Hanny Wassef
- Laboratory of Functional Endoproteolysis, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Jae Hyun Byun
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Khrystyna Platko
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Brandon Ason
- Cardiometabolic Disorders, Amgen Research Inc., South San Francisco, California, USA
| | - Simon Jackson
- Cardiometabolic Disorders, Amgen Research Inc., South San Francisco, California, USA
| | | | - Susan Shetterly
- Cardiometabolic Disorders, Amgen Research Inc., South San Francisco, California, USA
| | | | - Ali A Al-Hashimi
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Kevin Doyoon Won
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Majambu Mbikay
- Laboratory of Functional Endoproteolysis, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - An Tang
- Department of Radiology at the Centre Hospitalier Universitaire de Montréal, University of Montreal, Montreal, Quebec, Canada
| | - Guillaume Paré
- Population Health Research Institute and Departments of Medicine, Epidemiology, and Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Wadih Arap
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School and Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA
| | - Michel Chrétien
- Laboratory of Functional Endoproteolysis, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec, Canada
| | - Richard C Austin
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Calcium as a reliable marker for the quantitative assessment of endoplasmic reticulum stress in live cells. J Biol Chem 2021; 296:100779. [PMID: 34000299 PMCID: PMC8191341 DOI: 10.1016/j.jbc.2021.100779] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022] Open
Abstract
Calcium (Ca2+) is an essential mineral of endoplasmic reticulum (ER) luminal biochemistry because of the Ca2+ dependence of ER-resident chaperones charged with folding de novo proteins that transit this cellular compartment. ER Ca2+ depletion reduces the ability of chaperones to properly fold the proteins entering the ER, thus leading to an accumulation of misfolded proteins and the onset of a state known as ER stress. However, not all conditions that cause ER stress do so in a manner dependent on ER Ca2+ depletion. Agents such as tunicamycin inhibit the glycosylation of de novo polypeptides, a key step in the maturation process of newly synthesized proteins. Despite this established effect of tunicamycin, our understanding of how such conditions modulate ER Ca2+ levels is still limited. In the present study, we report that a variety of ER stress–inducing agents that have not been known to directly alter ER Ca2+ homeostasis can also cause a marked reduction in ER Ca2+ levels. Consistent with these observations, protecting against ER stress using small chemical chaperones, such as 4-phenylbutyrate and tauroursodeoxycholic acid, also attenuated ER Ca2+ depletion caused by these agents. We also describe a novel high-throughput and low-cost assay for the rapid quantification of ER stress using ER Ca2+ levels as a surrogate marker. This report builds on our understanding of ER Ca2+ levels in the context of ER stress and also provides the scientific community with a new, reliable tool to study this important cellular process in vitro.
Collapse
|
3
|
Lebeau P, Platko K, Al-Hashimi AA, Byun JH, Lhoták Š, Holzapfel N, Gyulay G, Igdoura SA, Cool DR, Trigatti B, Seidah NG, Austin RC. Loss-of-function PCSK9 mutants evade the unfolded protein response sensor GRP78 and fail to induce endoplasmic reticulum stress when retained. J Biol Chem 2018; 293:7329-7343. [PMID: 29593095 DOI: 10.1074/jbc.ra117.001049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
The proprotein convertase subtilisin/kexin type-9 (PCSK9) plays a central role in cardiovascular disease (CVD) by degrading hepatic low-density lipoprotein receptor (LDLR). As such, loss-of-function (LOF) PCSK9 variants that fail to exit the endoplasmic reticulum (ER) increase hepatic LDLR levels and lower the risk of developing CVD. The retention of misfolded protein in the ER can cause ER stress and activate the unfolded protein response (UPR). In this study, we investigated whether a variety of LOF PCSK9 variants that are retained in the ER can cause ER stress and hepatic cytotoxicity. Although overexpression of these PCSK9 variants caused an accumulation in the ER of hepatocytes, UPR activation or apoptosis was not observed. Furthermore, ER retention of endogenous PCSK9 via splice switching also failed to induce the UPR. Consistent with these in vitro studies, overexpression of PCSK9 in the livers of mice had no impact on UPR activation. To elucidate the cellular mechanism to explain these surprising findings, we observed that the 94-kDa glucose-regulated protein (GRP94) sequesters PCSK9 away from the 78-kDa glucose-regulated protein (GRP78), the major activator of the UPR. As a result, GRP94 knockdown increased the stability of GRP78-PCSK9 complex and resulted in UPR activation following overexpression of ER-retained PCSK9 variants relative to WT secreted controls. Given that overexpression of these LOF PCSK9 variants does not cause UPR activation under normal homeostatic conditions, therapeutic strategies aimed at blocking the autocatalytic cleavage of PCSK9 in the ER represent a viable strategy for reducing circulating PCSK9.
Collapse
Affiliation(s)
- Paul Lebeau
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Khrystyna Platko
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Ali A Al-Hashimi
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Gabriel Gyulay
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada
| | - Suleiman A Igdoura
- Departments of Biology and Pathology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - David R Cool
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435-0001
| | - Bernardo Trigatti
- Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada; Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- Department of Medicine, Division of Nephrology, McMaster University, St. Joseph's Healthcare Hamilton and Hamilton Center for Kidney Research, Hamilton, Ontario L8N 4A6, Canada; Thrombosis and Atherosclerosis Research Institute (TaARI), Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2, Canada.
| |
Collapse
|
4
|
Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders. Int J Mol Sci 2017; 18:ijms18020382. [PMID: 28208663 PMCID: PMC5343917 DOI: 10.3390/ijms18020382] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article.
Collapse
Affiliation(s)
- Daisuke Ariyasu
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hiderou Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo 183-8561, Japan.
| |
Collapse
|
5
|
Two novel mutations in seven Czech and Slovak kindreds with familial neurohypophyseal diabetes insipidus-benefit of genetic testing. Eur J Pediatr 2016; 175:1199-1207. [PMID: 27539621 DOI: 10.1007/s00431-016-2759-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/28/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Familial neurohypophyseal diabetes insipidus (FNDI) is a rare hereditary disorder with unknown prevalence characterized by arginine-vasopressin hormone (AVP) deficiency resulting in polyuria and polydipsia from early childhood. We report the clinical manifestation and genetic test results in seven unrelated kindreds of Czech or Slovak origin with FNDI phenotype. The age of the sign outset ranged from 2 to 17 years with remarkable interfamilial and intrafamilial variability. Inconclusive result of the fluid deprivation test in three children aged 7 and 17 years old might cause misdiagnosis; however, the AVP gene analysis confirmed the FNDI. The seven families segregated together five different mutations, two of them were novel (c.164C > A, c.298G > C). In addition, DNA analysis proved mutation carrier status in one asymptomatic 1-year-old infant. CONCLUSIONS The present study together with previously published data identified 38 individuals with FNDI in the studied population of 16 million which predicts a disease prevalence of 1:450,000 for the Central European region. The paper underscores that diagnostic water deprivation test may be inconclusive in polyuric children with partial diabetes insipidus and points to the clinical importance and feasibility of molecular genetic testing for AVP gene mutations in the proband and her/his first degree relatives. WHAT IS KNOWN • At least 70 different mutations were reported to date in about 100 families with neurohypophyseal diabetes insipidus (FNDI), and new mutations appear sporadically. What is New: • Two novel mutations of the AVP gene are reported • The importance of molecular testing in children with polyuria and inconclusive water deprivation test is emphasized.
Collapse
|
6
|
Ilhan M, Tiryakioglu NO, Karaman O, Coskunpinar E, Yildiz RS, Turgut S, Tiryakioglu D, Toprak H, Tasan E. A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus. J Endocrinol Invest 2016. [PMID: 26208472 DOI: 10.1007/s40618-015-0357-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE Familial neurohypophyseal diabetes insipidus (FNDI) is a rare, autosomal dominant, inherited disorder which is characterized by severe polydipsia and polyuria generally presenting in early childhood. In the present study, we aimed to analyze the AVP gene in a Turkish family with FNDI. METHODS Four patients with neurohypophyseal diabetes insipidus and ten healthy members of the family were studied. Diabetes insipidus was diagnosed by the water deprivation test in affected family members. Mutation analysis was performed by sequencing the whole coding region of AVP-NPII gene using DNA isolated from peripheral blood samples. RESULTS Urine osmolality was low (<300 mOsm/kg) during water deprivation test, and an increase more than 50 % in urine osmolality and recovery of the symptoms were observed by the administration of desmopressin in all patients. Plasma copeptin levels were lower than expected according to plasma osmolality. Pituitary MRI revealed partial empty sella with a bright spot in index patient and a normal neurohypophysis in the other affected subjects. Genetic screening revealed a novel, heterozygous mutation designated as c.-3A>C in all patients. CONCLUSION c.-3A>C mutation in 5'UTR of AVP gene in this family might lead to the truncation of signal peptide, aggregation of AVP in the cytoplasm instead of targeting in the endoplasmic reticulum, thereby could disrupt AVP secretion without causing neuronal cytotoxicity, which might explain the presence of bright spot. The predicted effect of this mutation should be investigated by further in vitro molecular studies.
Collapse
Affiliation(s)
- M Ilhan
- Department of Endocrinology and Metabolism, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey.
| | - N O Tiryakioglu
- Department of Molecular Biology and Genetics, Halic University, Istanbul, Turkey
| | - O Karaman
- Department of Endocrinology and Metabolism, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - E Coskunpinar
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - R S Yildiz
- Department of Internal Medicine, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - S Turgut
- Department of Internal Medicine, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - D Tiryakioglu
- Department of Basic Oncology, Oncology Institute, Istanbul University, Istanbul, Turkey
| | - H Toprak
- Department of Radiology, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| | - E Tasan
- Department of Endocrinology and Metabolism, Bezmialem University, Vatan Caddesi, 34093, Istanbul, Turkey
| |
Collapse
|
7
|
Greenwood M, Greenwood MP, Paton JFR, Murphy D. Transcription Factor CREB3L1 Regulates Endoplasmic Reticulum Stress Response Genes in the Osmotically Challenged Rat Hypothalamus. PLoS One 2015; 10:e0124956. [PMID: 25915053 PMCID: PMC4411032 DOI: 10.1371/journal.pone.0124956] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/19/2015] [Indexed: 11/18/2022] Open
Abstract
Arginine vasopressin (AVP) is synthesised in magnocellular neurons (MCNs) of supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus. In response to the hyperosmotic stressors of dehydration (complete fluid deprivation, DH) or salt loading (drinking 2% salt solution, SL), AVP synthesis increases in MCNs, which over-burdens the protein folding machinery in the endoplasmic reticulum (ER). ER stress and the unfolded protein response (UPR) are signaling pathways that improve ER function in response to the accumulation of misfold/unfold protein. We asked whether an ER stress response was activated in the SON and PVN of DH and SL rats. We observed increased mRNA expression for the immunoglobulin heavy chain binding protein (BiP), activating transcription factor 4 (Atf4), C/EBP-homologous protein (Chop), and cAMP responsive element binding protein 3 like 1 (Creb3l1) in both SON and PVN of DH and SL rats. Although we found no changes in the splicing pattern of X box-binding protein 1 (Xbp1), an increase in the level of the unspliced form of Xbp1 (Xbp1U) was observed in DH and SL rats. CREB3L1, a novel ER stress inducer, has been shown to be activated by ER stress to regulate the expression of target genes. We have previously shown that CREB3L1 is a transcriptional regulator of the AVP gene; however, a role for CREB3L1 in the response to ER stress has yet to be investigated in MCNs. Here, we used lentiviral vectors to introduce a dominant negative form of CREB3L1 (CREB3L1DN) in the rat SON. Expression of CREB3L1DN in the SON decreased Chop and Xbp1U mRNA levels, but not BiP and Atf4 transcript expression. CREB3L1 is thus implicated as a transcriptional mediator of the ER stress response in the osmotically stimulated SON.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, England
- * E-mail:
| | | | - Julian F. R. Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, England
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, England
- Department of Physiology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|