1
|
Deducing the Interplay Between Gut Flora and Respiratory Diseases: A New Therapeutic Strategy? Indian J Microbiol 2022; 63:1-17. [PMID: 36575670 PMCID: PMC9778463 DOI: 10.1007/s12088-022-01051-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal system, also referred to as the gut, is a universe that colonizes trillions of microbes. In addition to its digestive functions, the gut represents a biosystem that determines all the health vectors. It is now recognized as one of the body's defense systems, and good gut health regulates the body's immune responses. Disturbance of this barrier can trigger many diseases, including respiratory tract infections, as there is a close correlation between the gut microbiome and the chances of triggering illness. This review investigates the various factors affecting the gut microbiome, the diseases that can result from the dysregulation of the same, and their molecular mechanisms. The most basic solution to tackle this problem is to maintain the gut microbiome at the desired level. Timely diagnosis and interventions are needed for the proper management of the ensuing conditions. It is important to address the effects of factors on the gut microbiome and thereby regulate this level. The study also found that dysregulation in the system can lead to various diseases such as asthma, COPD, lung cancer following their respective pathways. In short, this paper reinforces the importance of the gut microbiome, the need to maintain its average level, and the need for proper interventions to treat the consequences. The manuscript posit that medications, diet as well and good physiological conditions of the human body can alter the microbiome and can ward off respiratory infections.
Collapse
|
2
|
Identification and validation of a cigarette smoke-related five-gene signature as a prognostic biomarker in kidney renal clear cell carcinoma. Sci Rep 2022; 12:2189. [PMID: 35140327 PMCID: PMC8828851 DOI: 10.1038/s41598-022-06352-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Cigarette smoking greatly promotes the progression of kidney renal clear cell carcinoma (KIRC), however, the underlying molecular events has not been fully established. In this study, RCC cells were exposed to the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine) for 120 days (40 passages), and then the soft agar colony formation, wound healing and transwell assays were used to explore characteristics of RCC cells. RNA-seq was used to explore differentially expressed genes. We found that NNK promoted RCC cell growth and migration in a dose-dependent manner, and RNA-seq explored 14 differentially expressed genes. In TCGA-KIRC cohort, Lasso regression and multivariate COX regression models screened and constructed a five-gene signature containing ANKRD1, CYB5A, ECHDC3, MT1E, and AKT1S1. This novel gene signature significantly associated with TNM stage, invasion depth, metastasis, and tumor grade. Moreover, when compared with individual genes, the gene signature contained a higher hazard ratio and therefore had a more powerful value for the prognosis of KIRC. A nomogram was also developed based on clinical features and the gene signature, which showed good application. Finally, AKT1S1, the most crucial component of the gene signature, was significantly induced after NNK exposure and its related AKT/mTOR signaling pathway was dramatically activated. Our findings supported that NNK exposure would promote the KIRC progression, and the novel cigarette smoke-related five-gene signature might serve as a highly efficient biomarker to identify progression of KIRC patients, AKT1S1 might play an important role in cigarette smoke exposure-induced KIRC progression.
Collapse
|
3
|
Francavilla A, Gagliardi A, Piaggeschi G, Tarallo S, Cordero F, Pensa RG, Impeduglia A, Caviglia GP, Ribaldone DG, Gallo G, Grioni S, Ferrero G, Pardini B, Naccarati A. Faecal miRNA profiles associated with age, sex, BMI, and lifestyle habits in healthy individuals. Sci Rep 2021; 11:20645. [PMID: 34667192 PMCID: PMC8526833 DOI: 10.1038/s41598-021-00014-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
For their stability and detectability faecal microRNAs represent promising molecules with potential clinical interest as non-invasive diagnostic and prognostic biomarkers. However, there is no evidence on how stool miRNA profiles change according to an individual’s age, sex, and body mass index (BMI) or how lifestyle habits influence the expression levels of these molecules. We explored the relationship between the stool miRNA levels and common traits (sex, age, BMI, and menopausal status) or lifestyle habits (physical activity, smoking status, coffee, and alcohol consumption) as derived by a self-reported questionnaire, using small RNA-sequencing data of samples from 335 healthy subjects. We detected 151 differentially expressed miRNAs associated with one variable and 52 associated with at least two. Differences in miR-638 levels were associated with age, sex, BMI, and smoking status. The highest number of differentially expressed miRNAs was associated with BMI (n = 92) and smoking status (n = 84), with several miRNAs shared between them. Functional enrichment analyses revealed the involvement of the miRNA target genes in pathways coherent with the analysed variables. Our findings suggest that miRNA profiles in stool may reflect common traits and lifestyle habits and should be considered in relation to disease and association studies based on faecal miRNA expression.
Collapse
Affiliation(s)
- Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | | | - Ruggero G Pensa
- Department of Computer Science, University of Turin, Turin, Italy
| | | | - Gian Paolo Caviglia
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Gaetano Gallo
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Giulio Ferrero
- Department of Computer Science, University of Turin, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Candiolo, Turin, Italy. .,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
4
|
Babu N, Bhat MY, John AE, Chatterjee A. The role of proteomics in the multiplexed analysis of gene alterations in human cancer. Expert Rev Proteomics 2021; 18:737-756. [PMID: 34602018 DOI: 10.1080/14789450.2021.1984884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Proteomics has played a pivotal role in identifying proteins perturbed in disease conditions when compared with healthy samples. Study of dysregulated proteins aids in identifying diagnostic markers and potential therapeutic targets. Cancer is an outcome of interplay of several such disarrayed proteins and molecular pathways which perturb cellular homeostasis, resulting in transformation. In this review, we discuss various facets of proteomic approaches, including tools and technological advancements, aiding in understanding differentially expressed molecules and signaling mechanisms. AREAS COVERED In this review, we have taken the approach of documenting the different methods of proteomic studies, ranging from labeling techniques, data analysis methods, and the nature of molecule detected. We summarize each technique and provide a glimpse of cancer research carried out using them, highlighting the advantages and drawbacks in comparison with others. Literature search using online resources, such as PubMed and Google Scholar were carried out for this approach. EXPERT OPINION Technological advancements in proteomics studies have come a long way from the study of two-dimensional mapping of proteins separated on gels in the early 1970s. Higher precision in molecular identification and quantification (high throughput), and greater number of samples analyzed have been the focus of researchers.
Collapse
Affiliation(s)
- Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Mohd Younis Bhat
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India
| | | | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
5
|
Mo F, Luo Y, Fan D, Zeng H, Zhao Y, Luo M, Liu X, Ma X. Integrated Analysis of mRNA-seq and miRNA-seq to Identify c-MYC, YAP1 and miR-3960 as Major Players in the Anticancer Effects of Caffeic Acid Phenethyl Ester in Human Small Cell Lung Cancer Cell Line. Curr Gene Ther 2021; 20:15-24. [PMID: 32445454 DOI: 10.2174/1566523220666200523165159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Caffeic Acid Phenethyl Ester (CAPE), an active extract of propolis, has recently been reported to have broad applications in various cancers. However, the effects of CAPE on Small Cell Lung Cancer (SCLC) are largely unknown. Therefore, the aim of this study was to determine the anti-proliferative effect of CAPE and explore the underlying molecular mechanisms in SCLC cells using high-throughput sequencing and bioinformatics analysis. METHODS Small-cell lung cancer H446 cells were treated with CAPE, and cell proliferation and apoptosis were then assessed. Additionally, the regulation mediated by miR-3960 after CAPE treatment was explored and the altered signaling pathways were predicted in a bioinformatics analysis. RESULTS CAPE significantly inhibited cell proliferation and induced apoptosis. CAPE decreased the expression of Yes-Associated Protein 1 (YAP1) and cellular myelocytomatosis oncogene (c-MYC) protein. Moreover, the upregulation of miR-3960 by CAPE contributed to CAPE-induced apoptosis. The knockdown of miR-3960 decreased the CAPE-induced apoptosis. CONCLUSION We demonstrated the anti-cancer effect of CAPE in human SCLC cells and studied the mechanism by acquiring a comprehensive transcriptome profile of CAPE-treated cells.
Collapse
Affiliation(s)
- Fei Mo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya Luo
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Dian Fan
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobei Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhou S, Zhu C, Pang Q, Liu HC. MicroRNA-217: A regulator of human cancer. Biomed Pharmacother 2020; 133:110943. [PMID: 33254014 DOI: 10.1016/j.biopha.2020.110943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022] Open
Abstract
As highly conserved non-coding RNAs of approximately 18-24 nucleotides, microRNAs (miRNAs) regulate the expression of target genes. Multiple studies have demonstrated that miRNAs participate in the regulation of human cancer. MircoRNA-217 (miR-217) participates in the regulation of various tumors by specifically binding target genes and post-transcriptional regulation. In recent years, there have been numerous reports about miR-217 in tumor progression. MiR-217 is known mainly as a tumor suppressor, although some studies have shown that it functions as an oncomiR. Here, we review the current research related to miR-217, including its role in tumor progression and the molecular mechanisms.
Collapse
Affiliation(s)
- Shuai Zhou
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Chao Zhu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Qing Pang
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| | - Hui Chun Liu
- Department of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233000, China.
| |
Collapse
|
7
|
Lu J, Zhu Y, Qin Y, Chen Y. CircNFIX Acts as a miR-212-3p Sponge to Enhance the Malignant Progression of Non-Small Cell Lung Cancer by Up-Regulating ADAM10. Cancer Manag Res 2020; 12:9577-9587. [PMID: 33061643 PMCID: PMC7537990 DOI: 10.2147/cmar.s272309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) remains the most commonly diagnosed malignancy and the leading cause of cancer death worldwide. Circular RNAs (circRNAs) have been demonstrated to play critical roles in human carcinogenesis, including NSCLC. However, it is still unclear whether circRNA nuclear factor I X (circNFIX) is implicated in the molecular pathogenesis of NSCLC. Methods The expression levels of circNFIX, miR-212-3p and a disintegrin and metalloproteinases 10 (ADAM10) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot. Cell viability was gauged by the Cell Counting Kit-8 (CCK-8) assay, and cell migration and invasion were determined by transwell assays. Glucose uptake and lactate product were determined using the assay kits. Targeted relationships among circNFIX, miR-212-3p and ADAM10 were verified by dual-luciferase reporter and RNA pulldown assays. Additionally, the xenograft model assays were carried out to analyze the role of circNFIX in tumor growth in vivo. Results Our data revealed that circNFIX was overexpressed in NSCLC and predicted poor prognosis of NSCLC patients. CircNFIX knockdown suppressed NSCLC cell viability, migration, invasion and glycolysis in vitro and hampered tumor growth in vivo. Mechanistically, CircNFIX acted as a molecular sponge of miR-212-3p, and the repressive effect of circNFIX knockdown on NSCLC cell malignant progression was mediated by miR-212-3p. Moreover, ADAM10 was a direct target of miR-212-3p, and circNFIX influenced ADAM10 expression by sponging miR-212-3p in NSCLC cells. Furthermore, the silencing of ADAM10 hindered NSCLC cell viability, migration, invasion and glycolysis in vitro. Conclusion Our findings first identified that the knockdown of circNFIX, a highly expressed circRNA in NSCLC, exerted a repressive role in NSCLC malignant progression at least in part through targeting the miR-212-3p/ADAM10 axis, illuminating a novel understanding of circRNA regulation in NSCLC.
Collapse
Affiliation(s)
- Jun Lu
- SSL Central Hospital of Dongguan City (The Third People's Hospital of Dongguan City), Dongguan, People's Republic of China
| | - Ying Zhu
- Information Section, SSL Central Hospital of Dongguan City (The Third People's Hospital of Dongguan City), Dongguan, People's Republic of China
| | - Youfa Qin
- Department of Clinical Pharmacy, SSL Central Hospital of Dongguan City (The Third People's Hospital of Dongguan City), Dongguan, People's Republic of China
| | - Yikai Chen
- SSL Central Hospital of Dongguan City (The Third People's Hospital of Dongguan City), Dongguan, People's Republic of China
| |
Collapse
|
8
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
9
|
Hu S, Zuo H, Qi J, Hu Y, Yu B. Analysis of Effect of Schisandra in the Treatment of Myocardial Infarction Based on Three-Mode Gene Ontology Network. Front Pharmacol 2019; 10:232. [PMID: 30949047 PMCID: PMC6435518 DOI: 10.3389/fphar.2019.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/22/2019] [Indexed: 12/31/2022] Open
Abstract
Schisandra chinensis is a commonly used traditional Chinese medicine, which has been widely used in the treatment of acute myocardial infarction in China. However, it has been difficult to systematically clarify the major pharmacological effect of Schisandra, due to its multi-component complex mechanism. In order to solve this problem, a comprehensive network analysis method was established based-on “component–gene ontology–effect” interactions. Through the network analysis, reduction of cardiac preload and myocardial contractility was shown to be the major effect of Schisandra components, which was further experimentally validated. In addition, the expression of NCOR2 and NFAT in myocyte were experimentally confirmed to be associated with Schisandra in the treatment of AMI, which may be responsible for the preservation effect of myocardial contractility. In conclusion, the three-mode gene ontology network can be an effective network analysis workflow to evaluate the pharmacological effects of a multi-drug complex system.
Collapse
Affiliation(s)
- Siyao Hu
- Jiangsu Key Laboratory of Traditional Medicine and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Huali Zuo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Jin Qi
- Jiangsu Key Laboratory of Traditional Medicine and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Boyang Yu
- Jiangsu Key Laboratory of Traditional Medicine and Translational Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
10
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
11
|
Choukrallah MA, Sewer A, Talikka M, Sierro N, Peitsch MC, Hoeng J, Ivanov NV. Epigenomics in tobacco risk assessment: Opportunities for integrated new approaches. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|