1
|
Elhabal SF, Ghaffar SA, Hager R, Elzohairy NA, Khalifa MM, Mohie PM, Gad RA, Omar NN, Elkomy MH, Khasawneh MA, Abdelaal N. Development of thermosensitive hydrogel of Amphotericin-B and Lactoferrin combination-loaded PLGA-PEG-PEI nanoparticles for potential eradication of ocular fungal infections: In-vitro, ex-vivo and in-vivo studies. Int J Pharm X 2023; 5:100174. [PMID: 36908304 PMCID: PMC9992749 DOI: 10.1016/j.ijpx.2023.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.
Collapse
Key Words
- A, aqueous phase
- AMP, Amphotericin-B
- ANOVA, Analysis of variance
- Amphotericin-B
- Atomic force microscopy (AFM)
- BCS, Biopharmaceutical Classification System
- BLF, Bovine Lactoferrin
- CD14, Cluster of differentiation 14
- CK, Creatine kinase
- Candida albicans
- Confocal laser scanning microscopy (CLSM)
- DLS, dynamic light scattering
- DMSO, dimethyl sulfoxide
- DSC, Differential scanning calorimetry
- Draize test
- EDC, ethyl-3-(3-dimethyl aminopropyl) carbodiimide
- EE%, Entrapment efficiency
- FT-IR, Fourier transform infrared
- FT-IR, Fourier-transform infrared spectroscopy
- GRAS, Generally recognized as a safe
- HCE-2, human corneal epithelial cells
- J, steady-state flux
- Kp, permeability coefficient
- LPS, Lipopolysaccharide
- Lactoferrin
- MIC, minimum inhibitory concentration
- NCCLS, National Committee for Clinical Laboratory Standards
- NHS, N-hydroxysuccinimide
- NPs, nanoparticles
- Nanoparticles
- O, organic phase
- P188, Kolliphor®P188
- P407, Poloxamer 407
- PBS, Phosphate buffered saline solution
- PDI, Polydispersity index
- PEG, polyethylene glycol
- PEI, poly-ethylene imine
- PLGA, Poly (lactic-co-glycolic acid)
- PS, Particle size
- Q24, amount penetrated after 24 h
- QR, Quantity retained
- REC, rules of the Study Ethics Committee
- SD, Standard deviations
- SE, Standard error
- SEM, Scanning electron microscope
- TEM, Transmission electron microscopy
- Triblock polymers PLGA-PEG-PEI
- ZP, Zeta potential.
Collapse
Affiliation(s)
- Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Shrouk A Ghaffar
- Tactical Medical Department, Caduceus Lane Healthcare, Alexandria 21532, Egypt
| | - Raghda Hager
- Department of Medicinal Microbiology and Immunology, Faculty of Medicine King Salman International University, El-Tor, South Siniai, Egypt
| | - Nahla A Elzohairy
- Air Force Specialized Hospital, Cairo 19448, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine, Cairo University, Egypt.,Department of Human Physiology, College of Medicine, King Saud University, 62511, Saudi Arabia
| | - Passant M Mohie
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21532, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Nasreen N Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammad Ahmad Khasawneh
- Department of Chemistry, College of Science U.A.E. University, Al-Ain, P.O. Box 17551, United Arab Emirates
| | - Nashwa Abdelaal
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Yang J, Ma Y, Luo Q, Liang Z, Lu P, Song F, Zhang Z, Zhou T, Zhang J. Improving the solubility of vorinostat using cyclodextrin inclusion complexes: The physicochemical characteristics, corneal permeability and ocular pharmacokinetics of the drug after topical application. Eur J Pharm Sci 2022; 168:106078. [PMID: 34838620 DOI: 10.1016/j.ejps.2021.106078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/27/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
Vorinostat (suberoylanilide hydroxamic acid, SAHA), an FDA-approved drug for cutaneous T cell lymphoma, has antiangiogenic and anti-inflammatory activity and thus has therapeutic potential for inflammatory corneal neovascularization (CNV). However, its practical administration is limited due to its poor aqueous solubility and permeability. This study aimed to enhance the corneal permeability of SAHA by promoting its inclusion into a complex with hydroxypropyl-β-CD (HPβCD) for topical application. In phase-solubility studies, the solubility of SAHA with HPβCD and sulfobutyl ether-β-CD (SEβCD) was assessed at different temperatures, and complexation efficiencies (K) were calculated. The inclusion complexes (ICs) were prepared and characterized by differential scanning calorimetry (DSC), infrared spectrometry (IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) after freeze-drying. The phase-solubility study showed that the complexation efficiencies of SAHA were higher in HPβCD solutions (297.35 M-1, 115.28 M-1 and 122.75 M-1) than in SEβCD solutions (169.75 M-1, 91.33 M-1 and 96.49 M-1) at 4 °C, 25 °C and 37 °C. HPβCD was selected for SAHA-IC preparation, and characterization revealed IC formation. SAHA existed in an amorphous state in the ICs. The ex vivo corneal permeability of SAHA was also evaluated and found to be greater when formulated as an HPβCD solution than as a suspension. Irritation assays in rabbit eyes showed that the SAHA-IC solution was not irritating after topical application. The ocular pharmacokinetics of SAHA in New Zealand White rabbits were assessed following topical administration (0.2%), and a 0.2% SAHA suspension was used as the control. Compared to its formulation as a suspension, the formulation of SAHA as an HPβCD solution increased its corneal bioavailability by more than 3-fold and its conjunctival bioavailability by more than 2-fold. Thus, IC formation was effective at improving the ocular bioavailability of SAHA. This study provides an important alternative approach for developing liquid pharmaceutical formulations of SAHA for topical ocular applications.
Collapse
Affiliation(s)
- Jingjing Yang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Yu Ma
- Henan University of Traditional Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou 450000, China
| | - Qing Luo
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Zhen Liang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Ping Lu
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Fei Song
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Zhen Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Tianyang Zhou
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Junjie Zhang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou 450003, China.
| |
Collapse
|