1
|
Xu Y, Wang Y, Zheng A, Yuan Y, Xu L, Tang Y, Qin Q. Efficient biostimulation of microbial dechlorination of polychlorinated biphenyls by acetate and lactate under nitrate reducing conditions: Insights into dechlorination pathways and functional genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133775. [PMID: 38367444 DOI: 10.1016/j.jhazmat.2024.133775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Microbial-catalyzed reductive dechlorination of polychlorinated biphenyls (PCBs) is largely affected by the indigenous sediment geochemical properties. In this study, the effects of nitrate on PCB dechlorination and microbial community structures were first investigated in Taihu Lake sediment microcosms. And biostimulation study was attempted supplementing acetate/lactate. PCB dechlorination was apparently inhibited under nitrate-reducing conditions. Lower PCB dechlorination rate and less PCB dechlorination extent were observed in nitrate amended sediment microcosms (T-N) than those in non-nitrate amended microcosms (T-1) during 66 weeks of incubation. The total PCB mass reduction in T-N was 17.6% lower than that in T-1. The flanked-para dechlorination was completely inhibited, while the ortho-flanked meta dechlorination was only partially inhibited in T-N. The 7.5 mM of acetate/lactate supplementation recovered PCB dechlorination by resuming ortho-flanked meta dechlorination. Repeated additions of lactate showed more effective biostimulation than acetate. Phylum Chloroflexi, containing most known PCB dechlorinators, was found to play a vital role on stability of the network structures. In T-N, putative dechlorinating Chloroflexi, Dehalococcoides and RDase genes rdh12, pcbA4, pcbA5 all declined. With acetate/lactate supplementation, Dehalococcoides grew by 1-2 orders of magnitude and rdh12, pcbA4, pcbA5 increased by 1-3 orders of magnitude. At Week 66, parent PCBs declined by 86.4% and 80.9% respectively in T-N-LA and T-N-AC compared to 69.9% in T-N. These findings provide insights into acetate/lactate biostimulation as a cost-effective approach for treating PCB contaminated sediments undergoing nitrate inhibition.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - An Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yaping Yuan
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qingdong Qin
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
2
|
Botti A, Biagi E, Musmeci E, Breglia A, Degli Esposti M, Fava F, Zanaroli G. Effect of polyhydroxyalkanoates on the microbial reductive dechlorination of polychlorinated biphenyls and competing anaerobic respirations in a marine microbial culture. MARINE POLLUTION BULLETIN 2023; 186:114458. [PMID: 36493518 DOI: 10.1016/j.marpolbul.2022.114458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The effect of polyhydroxyalkanoates (PHAs) with different composition on the reductive dechlorination activity of a polychlorinated biphenyls (PCBs) dechlorinating marine microbial community and on the activity of sulfate-reducing (SRB) and methanogenic bacteria (MB), were investigated in marine sediment microcosms and compared with the main monomer, 3-hydroxybutyric acid (3HB). Despite PHAs were fermented more slowly than 3HB, all electron donors stimulated constantly sulfate-reduction, methanogenesis and, only transiently, PCB reductive dechlorination. No relevant differences were observed with different compositions of PHAs. According to electron balances, the majority of the supplied electrons (50 %) were consumed by SRB and to less extent by MB (9-31 %), while a small percentage (0.01 %) was delivered to OHRB. In the studied conditions PHAs were confirmed as potential slow‑hydrogen releasing compounds in marine environment but their fermentation rate was sufficiently high to mainly stimulate the competitors of organohalide respring bacteria for electron donors.
Collapse
Affiliation(s)
- Alberto Botti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Eliana Musmeci
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Alessia Breglia
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Micaela Degli Esposti
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
3
|
Zahran EM, Bhattacharyya D, Bachas LG. Reactivity of Pd/Fe bimetallic nanotubes in dechlorination of coplanar polychlorinated biphenyls. CHEMOSPHERE 2013; 91:165-71. [PMID: 23332879 PMCID: PMC4526161 DOI: 10.1016/j.chemosphere.2012.12.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/16/2012] [Indexed: 05/07/2023]
Abstract
A new class of bimetallic materials based on palladium-decorated iron nanotubes is described that demonstrates high reactivity in dechlorination reactions. This high dechlorination efficiency was attributed to the high surface area to volume ratio of the hollow nanotubes structure. Herein, we evaluated the effect of different conditions, such as the nanotube size, and the palladium loading on the efficiency of the dechlorination of PCB 77, a model coplanar polychlorinated biphenyl (PCB), by the Pd/Fe bimetallic nanotubes system. The efficiency of the dechlorination was lowered by decreasing the tube diameter from 200 to 100 nm. In addition, the interior surface as well as the exterior surface of the as-synthesized Pd/Fe bimetallic nanotubes was found to contribute to the high efficiency of the dechlorination of PCB 77. The dechlorination of PCB 77 by Pd/Fe bimetallic nanotubes demonstrated small activation energy indicating diffusion controlled reaction. The as-prepared Pd/Fe bimetallic nanotubes showed extended lifetime activity when used in multiple dechlorination cycles.
Collapse
Affiliation(s)
- Elsayed M. Zahran
- Department of Chemistry, University of Miami, Coral Gables, FL 33146
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506
| | | |
Collapse
|
4
|
Bacterial degradation of aromatic compounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:278-309. [PMID: 19440284 PMCID: PMC2672333 DOI: 10.3390/ijerph6010278] [Citation(s) in RCA: 483] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 01/06/2009] [Indexed: 11/21/2022]
Abstract
Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.
Collapse
|