Jian Y, Lan-Tao L, Zhao JN, Jian-ning Z. Design and preliminary biomechanical analysis of artificial cervical joint complex.
Arch Orthop Trauma Surg 2013;
133:735-43. [PMID:
23494114 DOI:
10.1007/s00402-013-1717-6]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE
To design an artificial cervical joint complex (ACJC) prosthesis for non-fusion reconstruction after cervical subtotal corpectomy, and to evaluate the biomechanical stability, preservation of segment movements and influence on adjacent inter-vertebral movements of this prosthesis.
METHODS
The prosthesis was composed of three parts: the upper/lower joint head and the middle artificial vertebrae made of Cobalt-Chromium-Molybdenum (Co-Cr-Mo) alloy and polyethylene with a ball-and-socket joint design resembling the multi-axial movement in normal inter-vertebral spaces. Biomechanical tests of intact spine (control), Orion locking plate system and ACJC prosthesis were performed on formalin-fixed cervical spine specimens from 21 healthy cadavers to compare stability, range of motion (ROM) of the surgical segment and ROM of adjacent inter-vertebral spaces.
RESULTS
As for stability of the whole lower cervical spine, there was no significant difference of flexion, extension, lateral bending and torsion between intact spine group and ACJC prosthesis group. As for segment movements, difference in flexion, lateral bending or torsion between ACJC prosthesis group and control group was not statistically significant, while ACJC prosthesis group showed an increase in extension (P < 0.05) compared to that of the control group. In addition, ACJC prosthesis group demonstrated better flexion, extension and lateral bending compared to those of Orion plating system group (P < 0.05). Difference in adjacent inter-vertebral ROM of the ACJC prosthesis group was not statistically significant compared to that of the control group.
CONCLUSION
After cervical subtotal corpectomy, reconstruction with ACJC prosthesis not only obtained instant stability, but also reserved segment motions effectively, without abnormal gain of mobility at adjacent inter-vertebral spaces.
Collapse