1
|
Sabzvari T, Aflahe Iqbal M, Ranganatha A, Daher JC, Freire I, Shamsi SMF, Paul Anthony OV, Hingorani AG, Sinha AS, Nazir Z. A Comprehensive Review of Recent Trends in Surgical Approaches for Epilepsy Management. Cureus 2024; 16:e71715. [PMID: 39553057 PMCID: PMC11568833 DOI: 10.7759/cureus.71715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide, with a significant proportion of patients experiencing drug-resistant epilepsy, where seizures remain uncontrolled despite medical treatment. This review evaluates the latest surgical techniques for managing epilepsy, focusing on their effectiveness, safety, and the ongoing challenges that hinder their broader adoption. We explored various databases including PubMed, Google Scholar, and Cochrane Library to look for relevant literature using the following keywords: Epilepsy, Resective Surgery, Corpus Collectumy, and Antiepileptic Drugs. A total of 54 relevant articles were found and thoroughly explored. Recent advancements in surgical interventions include resective procedures such as anterior temporal lobectomy, corpus callosotomy, and hemispherectomy, which have been particularly effective in reducing seizures for specific types of epilepsy. Minimally invasive techniques, including laser interstitial thermal therapy and focused ultrasound, are increasingly being used, offering promising outcomes for certain patient groups. Additionally, neuromodulation methods such as deep brain stimulation, vagus nerve stimulation, and responsive neurostimulation provide alternative treatment options, especially for patients who are not suitable candidates for resective surgery. Despite these advancements, the full potential of epilepsy surgery is often underutilized due to various challenges. Inconsistent referral practices, a lack of standardized surgical protocols, and significant socioeconomic barriers continue to limit access to these procedures. Addressing these issues through improved referral processes, better education for healthcare providers and patients, and ensuring equitable access to advanced surgical treatments is crucial for optimizing patient outcomes. Future research should focus on overcoming these barriers and assessing long-term outcomes to further enhance the care of patients with epilepsy.
Collapse
Affiliation(s)
| | - Muhammed Aflahe Iqbal
- General Practice, Muslim Educational Society (MES) Medical College Hospital, Perinthalmanna, IND
- General Practice, Naseem Medical Centre, Doha, QAT
| | - Akash Ranganatha
- Surgery, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Jean C Daher
- Medicine, Lakeland Regional Health, Lakeland, USA
- Medicine, Universidad de Ciencias Médicas Andrés Vesalio Guzmán, San Jose, CRI
| | - Isabel Freire
- General Practice, Universidad Central del Ecuador, Quito, ECU
| | | | | | - Anusha G Hingorani
- Medicine and Surgery, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Mumbai, IND
| | | | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, PAK
| |
Collapse
|
2
|
Battista F, Esposito A, Muscas G, Della Puppa A. Functional frontal lobectomy in the surgical treatment of pharmacoresistant frontal lobe epilepsy: how I do it. Acta Neurochir (Wien) 2024; 166:299. [PMID: 39020068 PMCID: PMC11254979 DOI: 10.1007/s00701-024-06176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/23/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Frontal lobe epilepsy is pharmacoresistant in 30% of cases, constituting 10-20% of epilepsy surgeries. For cases of no lesional epilepsy (negative MRI), frontal lobectomy is a crucial treatment, historically involving Frontal Anatomical Lobectomy (AFL) with a 33.3% complication risk and 55.7% seizure control. METHODS We describe Frontal Functional Lobectomy (FFL), in which the boundaries are defined on the patient's functional cortico-subcortical areas, recognized with advanced intraoperative technologies such as tractography and navigated transcranial magnetic stimulation (nTMS). CONCLUSIONS The FFL allows for a broader resection with a lower rate of postoperative complications than the AFL.
Collapse
Affiliation(s)
- Francesca Battista
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Careggi University Hospital, Florence, Italy
| | - Alice Esposito
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Careggi University Hospital, Florence, Italy
- University of Florence, School of Human Health Sciences, Firenze, Italia
| | - Giovanni Muscas
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Careggi University Hospital, Florence, Italy
| | - Alessandro Della Puppa
- Department of Neurosurgery, Department of Neuroscience, Psychology, Drug Area and Child Health (NEUROFARBA), University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
3
|
Khoo A, Alim-Marvasti A, de Tisi J, Diehl B, Walker MC, Miserocchi A, McEvoy AW, Chowdhury FA, Duncan JS. Value of semiology in predicting epileptogenic zone and surgical outcome following frontal lobe epilepsy surgery. Seizure 2023; 106:29-35. [PMID: 36736149 DOI: 10.1016/j.seizure.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE To evaluate the ability of semiology alone in localising the epileptogenic zone (EZ) in people with frontal lobe epilepsy (FLE) who underwent resective surgery. METHODS We examined data on all individuals who had FLE surgery at our centre between January 01, 2011 and December 31, 2020. Descriptions of ictal semiology were obtained from video-EEG telemetry reports and presurgical multidisciplinary meeting summaries. The putative EZ was represented by the final site of resection. We assessed how well initial and combined set-of-semiologies correlated anatomically with the EZ, using a semiology visualisation tool to generate probabilistic cortical heatmaps of involvement in seizures. RESULTS Sixty-one individuals had FLE surgery over the study period. Twelve months following surgery, 28/61 (46%) were completely seizure-free, with a further eight experiencing only auras. Comparing the semiology database with the putative EZ, combined set-of-semiology correctly lateralised in 77% (95% CI: 69-85%), localised to the frontal lobe in 57% (95% CI: 48-67%), frontal lobe subregions in 52% (95% CI: 43-62%), and frontal gyri in 25% (95% CI: 16-33%). No difference in degree of correlation was seen comparing those with ongoing seizures 12 months after surgery to those seizure free. SIGNIFICANCE Semiology alone was able to correctly lateralize the putative EZ in 77%, and localise to a sublobar level in approximately half of individuals who had FLE surgery. Semiology is not adequate alone and must be combined with imaging and EEG data to identify the epileptogenic zone.
Collapse
Affiliation(s)
- Anthony Khoo
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Ali Alim-Marvasti
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jane de Tisi
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Beate Diehl
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Anna Miserocchi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Andrew W McEvoy
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Fahmida A Chowdhury
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - John S Duncan
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK; Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|