1
|
Pan J, Tong F, Ren N, Ren L, Yang Y, Gao F, Xu Q. Role of N 6‑methyladenosine in the pathogenesis, diagnosis and treatment of prostate cancer (Review). Oncol Rep 2024; 51:88. [PMID: 38757383 PMCID: PMC11110010 DOI: 10.3892/or.2024.8747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Prostate cancer (PCa) affects males of all racial and ethnic groups, and leads to higher rates of mortality in those belonging to a lower socioeconomic status due to the late detection of the disease. PCa affects middle‑aged males between the ages of 45 and 60 years, and is the highest cause of cancer‑associated mortality in Western countries. As the most abundant and common mRNA modification in higher eukaryotes, N6‑methyladenosine (m6A) is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recent studies have found that abnormal expression levels of various m6A regulators significantly affect the development and progression of various types of cancer, including PCa. The present review discusses the influence of m6A regulatory factors on the pathogenesis and progression of PCa through mRNA modification based on the current state of research on m6A methylation modification in PCa. It is considered that the treatment of PCa with micro‑molecular drugs that target the epigenetics of the m6A regulator to correct abnormal m6A modifications is a direction for future research into current diagnostic and therapeutic approaches for PCa.
Collapse
Affiliation(s)
- Junjie Pan
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Fei Tong
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Affiliated Hangzhou First People's Hospital, Hangzhou, Zhejiang 310051, P.R. China
| | - Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, P.R. China
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
2
|
Han Z, Yi X, Li J, Zhang T, Liao D, You J, Ai J. RNA m 6A modification in prostate cancer: A new weapon for its diagnosis and therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188961. [PMID: 37507057 DOI: 10.1016/j.bbcan.2023.188961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor and the second leading cause of cancer-related mortality in men worldwide. Despite significant advances in PCa therapy, the underlying molecular mechanisms have yet to be fully elucidated. Recently, epigenetic modification has emerged as a key player in tumor progression, and RNA-based N6-methyladenosine (m6A) epigenetic modification was found to be crucial. This review summarizes comprehensive state-of-art mechanisms underlying m6A modification, its implication in the pathogenesis, and advancement of PCa in protein-coding and non-coding RNA contexts, its relevance to PCa immunotherapy, and the ongoing clinical trials for PCa treatment. This review presents potential m6A-based targets and paves a new avenue for diagnosing and treating PCa, providing new guidelines for future related research through a systematic review of previous results.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Tianyi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jia You
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China.
| |
Collapse
|
3
|
Wan H, Feng Y, Wu J, Zhu L, Mi Y. Functions and mechanisms of N6‑methyladenosine in prostate cancer (Review). Mol Med Rep 2022; 26:280. [PMID: 35856412 PMCID: PMC9364137 DOI: 10.3892/mmr.2022.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) has long been a major public health problem affecting men worldwide. Even with treatment, it can develop into castration-resistant PCa. With the continuous advancement in epigenetics, researchers have explored N6-methyladenosine (m6A) in search of a more effective and lasting treatment for PCa. m6A is widely distributed in mammalian cells and influences various aspects of mRNA metabolism. Recently, it has been associated with the development or suppression of various types of cancer, including PCa. This review summarizes the recent findings on m6A regulation and its functions and mechanisms in cells, focusing on the various functional proteins operating within m6A in PCa cells. Moreover, the potential clinical value of exploiting m6A modification as an early diagnostic marker in PCa diagnosis and therapeutics was discussed. m6A may also be used as an indicator to evaluate treatment outcome and prognosis.
Collapse
Affiliation(s)
- Hongyuan Wan
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yanyan Feng
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Junjie Wu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Lijie Zhu
- Department of Urology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yuanyuan Mi
- Department of Urology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
4
|
Sánchez-Maldonado JM, Collado R, Cabrera-Serrano AJ, Ter Horst R, Gálvez-Montosa F, Robles-Fernández I, Arenas-Rodríguez V, Cano-Gutiérrez B, Bakker O, Bravo-Fernández MI, García-Verdejo FJ, López JAL, Olivares-Ruiz J, López-Nevot MÁ, Fernández-Puerta L, Cózar-Olmo JM, Li Y, Netea MG, Jurado M, Lorente JA, Sánchez-Rovira P, Álvarez-Cubero MJ, Sainz J. Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14102376. [PMID: 35625981 PMCID: PMC9139180 DOI: 10.3390/cancers14102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we have evaluated whether 57 genome-wide association studies (GWAS)-identified common variants for type 2 diabetes (T2D) influence the risk of developing prostate cancer (PCa) in a population of 304 Caucasian PCa patients and 686 controls. The association of selected single nucleotide polymorphisms (SNPs) with the risk of PCa was validated through meta-analysis of our data with those from the UKBiobank and FinnGen cohorts, but also previously published genetic studies. We also evaluated whether T2D SNPs associated with PCa risk could influence host immune responses by analysing their correlation with absolute numbers of 91 blood-derived cell populations and circulating levels of 103 immunological proteins and 7 steroid hormones. We also investigated the correlation of the most interesting SNPs with cytokine levels after in vitro stimulation of whole blood, peripheral mononuclear cells (PBMCs), and monocyte-derived macrophages with LPS, PHA, Pam3Cys, and Staphylococcus Aureus. The meta-analysis of our data with those from six large cohorts confirmed that each copy of the FTOrs9939609A, HNF1Brs7501939T, HNF1Brs757210T, HNF1Brs4430796G, and JAZF1rs10486567A alleles significantly decreased risk of developing PCa (p = 3.70 × 10-5, p = 9.39 × 10-54, p = 5.04 × 10-54, p = 1.19 × 10-71, and p = 1.66 × 10-18, respectively). Although it was not statistically significant after correction for multiple testing, we also found that the NOTCH2rs10923931T and RBMS1rs7593730 SNPs associated with the risk of developing PCa (p = 8.49 × 10-4 and 0.004). Interestingly, we found that the protective effect attributed to the HFN1B locus could be mediated by the SULT1A1 protein (p = 0.00030), an arylsulfotransferase that catalyzes the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic compounds. In addition to these results, eQTL analysis revealed that the HNF1Brs7501939, HNF1Brs757210, HNF1Brs4430796, NOTCH2rs10923931, and RBMS1rs7593730 SNPs influence the risk of PCa through the modulation of mRNA levels of their respective genes in whole blood and/or liver. These results confirm that functional TD2-related variants influence the risk of developing PCa, but also highlight the need of additional experiments to validate our functional results in a tumoral tissue context.
Collapse
Affiliation(s)
- José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Ricardo Collado
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | - Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
| | - Fernando Gálvez-Montosa
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Inmaculada Robles-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
| | - Verónica Arenas-Rodríguez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Blanca Cano-Gutiérrez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Olivier Bakker
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | | | - Francisco José García-Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - José Antonio López López
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Jesús Olivares-Ruiz
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | | | | | | | - Yang Li
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose Antonio Lorente
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Legal Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - María Jesús Álvarez-Cubero
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-95871-5500 (ext. 126); Fax: +34-9-5863-7071
| |
Collapse
|
5
|
Tan Z, Shi S, Xu J, Liu X, Lei Y, Zhang B, Hua J, Meng Q, Wang W, Yu X, Liang C. RNA N6-methyladenosine demethylase FTO promotes pancreatic cancer progression by inducing the autocrine activity of PDGFC in an m 6A-YTHDF2-dependent manner. Oncogene 2022; 41:2860-2872. [PMID: 35422475 PMCID: PMC9106577 DOI: 10.1038/s41388-022-02306-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
RNA N6-methyladenosine (m6A) is an emerging regulator of mRNA modifications and represents a novel player in tumorigenesis. Although it has functional significance in both pathological and physiological processes, the role of m6A modification in pancreatic ductal cancer (PDAC) remains elusive. Here, we showed that high fat mass and obesity-associated gene (FTO) expression was associated with a poor prognosis in PDAC patients and that suppression of FTO expression inhibited cell proliferation. Here, m6A sequencing (m6A-seq) was performed to screen genes targeted by FTO. The effects of FTO stimulation on the biological characteristics of pancreatic cancer cells, including proliferation and colony formation, were investigated in vitro and in vivo. The results indicate that FTO directly targets platelet-derived growth factor C (PDGFC) and stabilizes its mRNA expression in an m6A-YTHDF2-dependent manner. m6A-methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), RNA immunoprecipitation (RIP), and luciferase reporter assays were employed to validate the specific binding of FTO to PDGFC. PDGFC upregulation led to reactivation of the Akt signaling pathway, promoting cell growth. Overall, our study reveals that FTO downregulation leads to increased m6A modifications in the 3' UTR of PDGFC and then modulates the degradation of its transcriptional level in an m6A-YTHDF2-dependent manner, highlighting a potential therapeutic target for PDAC treatment and prognostic prediction.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiaomeng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yubin Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yankovskaya SV, Mosalev KI, Ivanov ID, Pinkhasov BB, Selyatitskaya VG. Association of rs9939609 polymorphism in the FTO gene with features of androgen status in men. СИБИРСКИЙ НАУЧНЫЙ МЕДИЦИНСКИЙ ЖУРНАЛ 2022; 42:18-24. [DOI: 10.18699/ssmj20220203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The purpose of the study was to investigate the association of carriage of rs9939609 polymorphism in the FTO gene with features of androgen status in men.Material and methods. The observational one-stage examination of 139 male patients aged 22 to 69 years, admitted to a therapeutic hospital in a planned manner has been carried out in the Clinic of the Federal Research Center for Fundamental and Translational Medicine in the period 2020–2021. All fasting men in the morning (8:00–8:30) were carried out of an anthropometric examination to determine physical development, sampling of venous blood from the cubital vein to assess the hormonal parameters of androgen status, and taking a sample of the buccal epithelium for molecular genetic research. Based on the carriage of the rs9939609 (T>A) polymorphism of the FTO gene, the following groups (G) of patients were distinguished: G1 – wild-type homozygotes (WT/WT), G2 – heterozygotes (WT/A), G3 – homozygotes for the mutant allele (A/A).Results and discussion. The statistically significant differences were found in the levels of total testosterone between G1 and G3 (11.6 vs 14.5 nmol/L, p = 0.010), as well as free testosterone in G1 compared to G2 (0.233 vs 0.287 nmol/L, p = 0.012) and G3 (0.233 vs 0.321 nmol/L, p = 0.002) when analyzing the clinical-anthropometric and hormonal features of the androgen status of the examined male patients in the selected groups. Assessment of the association revealed statistically significant positive correlations between the carriage of the mutant allele and the levels of total (r = 0.247; p = 0.013) and free (r = 0.296; p = 0.003) testosterone, and negative - with the frequency of androgen deficiency according to the free testosterone criteria (r = –0.240; p = 0.016).Conclusions. It has been shown that the carriage of the A/A genotype of rs9939609 polymorphism of the FTO gene is associated with an increase in the levels of total and free testosterone, that indicates a protective effect against the development of androgen deficiency in men. The obtained results suggest that this effect is due to the epigenetic effect of the FTO gene protein product on the expression of other genes involved in the synthesis of androgens in the gonads, but also in the adrenal cortex since no association of the carriage of the rs9939609 polymorphism of the FTO gene with the DHEA-C level was found.
Collapse
Affiliation(s)
| | - K. I. Mosalev
- Federal Research Center for Fundamental and Translational Medicine;
Novosibirsk State University
| | - I. D. Ivanov
- Federal Research Center for Fundamental and Translational Medicine
| | - B. B. Pinkhasov
- Federal Research Center for Fundamental and Translational Medicine
| | | |
Collapse
|
7
|
Trevisano RG, Gregnani MF, de Azevedo BC, de Almeida SS. The Association of Fat Mass and Obesity-Associated Gene Polymorphism (rs9939609) on the Body Composition of Older People: Systematic Review. Curr Aging Sci 2022; 15:229-241. [PMID: 35362391 DOI: 10.2174/1874609815666220331090135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Population aging is growing faster than any other age group. Associated with aging, the prevalence of overweight and obesity is a potential risk factor for the development and aggravation of numerous pathologies. A genetic factor often associated with obesity is the Fat mass and obesity associated (FTO) (rs9939609) gene polymorphism, which has been extensively investigated in children, young, and adults. However, few studies have been carried out with the older population. This review aimed to verify the influence of the FTO (rs9939609) gene polymorphism on the body composition of the older population. METHODS We conducted a systematic review and Meta-analysis of PubMed, Scielo, and LILACS databases. Statistical analysis for meta-analysis was performed using mean values of Body Mass Index (BMI) and standard deviations. RESULTS The results did not show significant differences between FTO genotypes and BMI values (-0.32, 95%CI -0.45 to -0.19, I2 = 0%, p = 0.52). However, 59% of the studies identified some influence on body composition, obesity, or comorbidities. CONCLUSION Few publications verify FTO polymorphism effects on specific groups of the older, suggesting a reduction in the influence of this gene in the BMI with advancing age. However, we believe that more controlled studies in older populations should be performed.
Collapse
Affiliation(s)
| | | | | | - Sandro Soares de Almeida
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.,Albert Einstein Israeli Hospital, São Paulo, Brazil.,Ibirapuera University, São Paulo, Brazil
| |
Collapse
|
8
|
Zhang K, Han Z, Zhao H, Liu S, Zeng F. An integrated model of FTO and METTL3 expression that predicts prognosis in lung squamous cell carcinoma patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1523. [PMID: 34790729 PMCID: PMC8576700 DOI: 10.21037/atm-21-4470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022]
Abstract
Background Lung squamous cell carcinoma (LUSC) approximately accounts for a third of lung cancers. However, the role of N6-methyladenosine (m6A) in LUSC remains largely unknown according to previous studies. Methods In this study, we investigated the mutations, copy number variants (CNVs), expression of 20 m6A RNA methylation regulators, and clinical data from The Cancer Genome Atlas-LUSC (TCGA-LUSC). These data were used for the training cohort of screening potential biomarkers. The prognostic model of m6A RNA methylation regulators was constructed. A receiver operating characteristic (ROC) analysis was undertaken to determine the area under the curves (AUCs) (for 3- and 5-year survival) for the model. Additionally, the accuracy of the two-gene model was confirmed with external data verifications. Combined two-gene model and clinincal information were performed to construct a nomogram to predict patient’s prognostic risk assessment. Results Fat mass- and obesity-associated protein (FTO) and methyltransferase-like 3 (METTL3) were identified as potential prognostic biomarkers to evaluate benign and malignant tumors and prognosticate. The following prognostic model of m6A RNA methylation regulators was constructed: risk score = 0.162 × FTO − 0.069 × METTL3. Patients in low-risk group [median overall survival (mOS), 43.4 months] had longer survival than those with high-risk (mOS, 67.3 months) with P=0.0023. The smoking grade and risk score could be independent prognostic factors (P=0.00098 and P=0.0014, respectively). Ultimately, a nomogram was developed to assist clinicians to predict clinical outcomes. Conclusions FTO and METTL3 are potential prognostic biomarkers of LUSC. The two-gene model’s use of prognostic risk scores may provide guidance in the selection of therapeutic strategies.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhaojie Han
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongmei Zhao
- Chosen Med Technology (Beijing) Co., Ltd., Beijing, China
| | - Siyao Liu
- Chosen Med Technology (Beijing) Co., Ltd., Beijing, China
| | - Fuchun Zeng
- Department of Thoracic Surgery, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
9
|
Wang JY, Chen LJ, Qiang P. The Potential Role of N6-Methyladenosine (m6A) Demethylase Fat Mass and Obesity-Associated Gene (FTO) in Human Cancers. Onco Targets Ther 2020; 13:12845-12856. [PMID: 33364780 PMCID: PMC7751723 DOI: 10.2147/ott.s283417] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) demethylase fat mass and obesity-associated gene(FTO), previously recognized to be related with obesity and diabetes, was gradually discovered to be dysregulated in multiple cancers and plays an oncogenic or tumor-suppressive role. However, the specific expression and pro- or anti-cancer role of FTO in various cancers remained controversial. In this review, through summarizing the available literature, we found that FTO single nucleotide polymorphisms (SNPs) were closely related with cancer risk. Additionally, the dysregulation of FTO was implicated in multiple biological processes, such as cancer cell apoptosis, proliferation, migration, invasion, metastasis, cell-cycle, differentiation, stem cell self-renewal and so on. These modulations mostly relied on the communications between FTO and specific signaling pathways, including PI3K/AKT, MAPK and mTOR signaling pathways. Furthermore, FTO had great potential for clinical application by serving as a prognostic biomarker.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Jiangsu 215600, People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Li-Juan Chen
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Jiangsu 215600, People's Republic of China
| | - Ping Qiang
- Department of Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang Affiliated Hospital of Soochow University, Zhangjiagang, Jiangsu 215600, People's Republic of China
| |
Collapse
|
10
|
Feliciano-Astacio BE, Celis K, Ramos J, Rajabli F, Adams LD, Rodriguez A, Rodriguez V, Bussies PL, Sierra C, Manrique P, Mena PR, Grana A, Prough M, Hamilton-Nelson KL, Feliciano N, Chinea A, Acosta H, McCauley JL, Vance JM, Beecham GW, Pericak-Vance MA, Cuccaro ML. The Puerto Rico Alzheimer Disease Initiative (PRADI): A Multisource Ascertainment Approach. Front Genet 2019; 10:538. [PMID: 31275353 PMCID: PMC6593074 DOI: 10.3389/fgene.2019.00538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/17/2019] [Indexed: 11/28/2022] Open
Abstract
Introduction Puerto Ricans, the second largest Latino group in the continental US, are underrepresented in genomic studies of Alzheimer disease (AD). To increase representation of this group in genomic studies of AD, we developed a multisource ascertainment approach to enroll AD patients, and their family members living in Puerto Rico (PR) as part of the Alzheimer’s Disease Sequencing Project (ADSP), an international effort to advance broader personalized/precision medicine initiatives for AD across all populations. Methods The Puerto Rico Alzheimer Disease Initiative (PRADI) multisource ascertainment approach was developed to recruit and enroll Puerto Rican adults aged 50 years and older for a genetic research study of AD, including individuals with cognitive decline (AD, mild cognitive impairment), their similarly, aged family members, and cognitively healthy unrelated individuals age 50 and up. Emphasizing identification and relationship building with key stakeholders, we conducted ascertainment across the island. In addition to reporting on PRADI ascertainment, we detail admixture analysis for our cohort by region, group differences in age of onset, cognitive level by region, and ascertainment source. Results We report on 674 individuals who met standard eligibility criteria [282 AD-affected participants (42% of the sample), 115 individuals with mild cognitive impairment (MCI) (17% of the sample), and 277 cognitively healthy individuals (41% of the sample)]. There are 43 possible multiplex families (10 families with 4 or more AD-affected members and 3 families with 3 AD-affected members). Most individuals in our cohort were ascertained from the Metro, Bayamón, and Caguas health regions. Across health regions, we found differences in ancestral backgrounds, and select clinical traits. Discussion The multisource ascertainment approach used in the PRADI study highlights the importance of enlisting a broad range of community resources and providers. Preliminary results provide important information about our cohort that will be useful as we move forward with ascertainment. We expect that results from the PRADI study will lead to a better understanding of genetic risk for AD among this population.
Collapse
Affiliation(s)
| | - Katrina Celis
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jairo Ramos
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Larry Deon Adams
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alejandra Rodriguez
- Department of Internal Medicine, Universidad Central Del Caribe, Bayamón, PR, United States
| | - Vanessa Rodriguez
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Parker L Bussies
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolina Sierra
- Department of Internal Medicine, Universidad Central Del Caribe, Bayamón, PR, United States
| | - Patricia Manrique
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Pedro R Mena
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Antonella Grana
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michael Prough
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kara L Hamilton-Nelson
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Angel Chinea
- Department of Internal Medicine, Universidad Central Del Caribe, Bayamón, PR, United States
| | | | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michael L Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m 6A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol 2019; 145:19-29. [PMID: 30465076 DOI: 10.1007/s00432-018-2796-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The fat mass- and obesity-associated (FTO) gene on chromosome 16q12.2 shows an intimate association with obesity and body mass index. Recently, research into the FTO gene and its expression product has attracted widespread interest due to the identification of FTO as an N6-methyladenosine (m6A) demethylase. FTO primarily regulates the m6A levels of downstream targets via their 3' untranslated regions. FTO not only plays a critical role in obesity-related diseases but also is involved in the occurrence, development and prognosis of many types of cancer, such as acute myeloid leukaemia, glioblastoma and breast cancer. Currently, studies indicate that FTO is a crucial component of m6A modification, it regulates cancer stem cell function, and promotes the growth, self-renewal and metastasis of cancer cells. In this review, we summarized and analysed the data regarding the structural features and biological functions of FTO as well as its association with different cancers and possible molecular mechanisms. METHODS We systematically reviewed the related literatures regarding FTO and its demethylation activity in many pathologic and physiological processes, especially in cancer-related diseases based on PubMed databases in this article. RESULTS Mounting evidence indicated that FTO plays a critical role in occurrence, progression and treatment of various cancers, even acting as a cancer oncogene in acute myeloid leukaemia, research on which is no longer restricted to metabolic diseases such as obesity and diabetes. CONCLUSION Considering FTO's critical role in many diseases, FTO may become a new promising target for the diagnosis and treatment of various diseases in the near future, especially for specific types of cancers, such as acute myeloid leukaemia, glioblastoma and breast cancer.
Collapse
Affiliation(s)
- JiaLing Chen
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Bin Du
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Kadumuri RV, Janga SC. Epitranscriptomic Code and Its Alterations in Human Disease. Trends Mol Med 2018; 24:886-903. [PMID: 30120023 DOI: 10.1016/j.molmed.2018.07.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innovations in epitranscriptomics have resulted in the identification of more than 160 RNA modifications to date. These developments, together with the recent discovery of writers, readers, and erasers of modifications occurring across a wide range of RNAs and tissue types, have led to a surge in integrative approaches for transcriptome-wide mapping of modifications and protein-RNA interaction profiles of epitranscriptome players. RNA modification maps and crosstalk between them have begun to elucidate the role of modifications as signaling switches, entertaining the notion of an epitranscriptomic code as a driver of the post-transcriptional fate of RNA. Emerging single-molecule sequencing technologies and development of antibodies specific to various RNA modifications could enable charting of transcript-specific epitranscriptomic marks across cell types and their alterations in disease.
Collapse
Affiliation(s)
- Rajashekar Varma Kadumuri
- Department of BioHealth Informatics, School of Informatics and Computing, Walker Plaza Building, Indiana University-Purdue University Indianapolis, 719 Indiana Avenue, Suite 319, Indianapolis, IN 46202, USA
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Walker Plaza Building, Indiana University-Purdue University Indianapolis, 719 Indiana Avenue, Suite 319, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Medical Research and Library Building, Indiana University School of Medicine, 975 West Walnut Street, Indianapolis, IN 46202, USA; Centre for Computational Biology and Bioinformatics, 5021 Health Information and Translational Sciences, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, IN 46202, USA.
| |
Collapse
|