1
|
Fernández L, Kong CS, Alkhoury M, Tryfonos M, Brighton PJ, Rawlings TM, Muter J, Gori MS, Leirós CP, Lucas ES, Brosens JJ, Ramhorst R. The endoplasmic reticulum protein HSPA5/BiP is essential for decidual transformation of human endometrial stromal cells. Sci Rep 2024; 14:25992. [PMID: 39472623 PMCID: PMC11522507 DOI: 10.1038/s41598-024-76241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Decidualization denotes the process of inflammatory reprogramming of endometrial stromal cells (EnSC) into specialized decidual cells (DC). During this process, EnSC are subjected to endoplasmic reticulum (ER) stress as well as acute cellular senescence. Both processes contribute to the proinflammatory mid-luteal implantation window and their dysregulation has been implicated in reproductive failure. Here, we evaluated the link between ER stress, decidual differentiation and senescence. In-silico analysis identified HSPA5 gene, codifying the ER chaperone BiP, as a potentially critical regulator of cell fate divergence of decidualizing EnSC into anti-inflammatory DC and pro-inflammatory senescent decidual cells (snDC). Knockdown of HSPA5 in primary EnSC resulted both in decreased expression of DC marker genes and attenuated induction of senescence associated β-galactosidase activity, a marker of snDC. Stalling of the decidual reaction upon HSPA5 knockdown was apparent at 8 days of differentiation and was preceded by the upregulation of ER stress associated proteins IRE1α and PERK. Further, HSPA5 knockdown impaired colony-forming unit activity of primary EnSC, indicative of loss of cellular plasticity. Together, our results point to a key role for HSPA5/BiP in decidual transformation of EnSCs and highlight the importance of constraining ER stress levels during this process.
Collapse
Affiliation(s)
- Laura Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Chow-Seng Kong
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Majd Alkhoury
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Maria Tryfonos
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Paul J Brighton
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Thomas M Rawlings
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
| | - Maria Soledad Gori
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina
| | - Emma S Lucas
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
- Faculty of Health, University of Sheffield, Sheffield, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales IQUIBICEN, Buenos Aires, Argentina.
- School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET, Int. Guiraldes 2160, Ciudad Universitaria, Pabellón 2 Piso 4, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Salisbury E, Rawlings TM, Efstathiou S, Tryfonos M, Makwana K, Fitzgerald HC, Gargett CE, Cameron NR, Haddleton DM, Brosens JJ, Eissa AM. Photo-Cross-linked Gelatin Methacryloyl Hydrogels Enable the Growth of Primary Human Endometrial Stromal Cells and Epithelial Gland Organoids. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39140-39152. [PMID: 39022819 PMCID: PMC11299152 DOI: 10.1021/acsami.4c08763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
In vitro three-dimensional (3D) models are better able to replicate the complexity of real organs and tissues than 2D monolayer models. The human endometrium, the inner lining of the uterus, undergoes complex changes during the menstrual cycle and pregnancy. These changes occur in response to steroid hormone fluctuations and elicit crosstalk between the epithelial and stromal cell compartments, and dysregulations are associated with a variety of pregnancy disorders. Despite the importance of the endometrium in embryo implantation and pregnancy establishment, there is a lack of in vitro models that recapitulate tissue structure and function and as such a growing demand for extracellular matrix hydrogels that can support 3D cell culture. To be physiologically relevant, an in vitro model requires mechanical and biochemical cues that mimic those of the ECM found in the native tissue. We report a semisynthetic gelatin methacryloyl (GelMA) hydrogel that combines the bioactive properties of natural hydrogels with the tunability and reproducibility of synthetic materials. We then describe a simple protocol whereby cells can quickly be encapsulated in GelMA hydrogels. We investigate the suitability of GelMA hydrogel to support the development of an endometrial model by culturing the main endometrial cell types: stromal cells and epithelial cells. We also demonstrate how the mechanical and biochemical properties of GelMA hydrogels can be tailored to support the growth and maintenance of epithelial gland organoids that emerge upon 3D culturing of primary endometrial epithelial progenitor cells in a defined chemical medium. We furthermore demonstrate the ability of GelMA hydrogels to support the viability of stromal cells and their function measured by monitoring decidualization in response to steroid hormones. This study describes the first steps toward the development of a hydrogel matrix-based model that recapitulates the structure and function of the native endometrium and could support applications in understanding reproductive failure.
Collapse
Affiliation(s)
- Emma Salisbury
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Thomas M. Rawlings
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | | | - Maria Tryfonos
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | - Komal Makwana
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | - Harriet C. Fitzgerald
- The
Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC 3168, Australia
- Department
of Obstetrics and Gynaecology, Monash University, Clayton VIC 3168, Australia
| | - Caroline E. Gargett
- The
Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC 3168, Australia
- Department
of Obstetrics and Gynaecology, Monash University, Clayton VIC 3168, Australia
| | - Neil R. Cameron
- Department
of Materials Science and Engineering, Monash
University, Clayton, Victoria 3800, Australia
- School of
Engineering, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Jan J. Brosens
- Division
of Biomedical Sciences, Reproductive Health Unit, Clinical Science
Research Laboratories, Warwick Medical School, University of Warwick
and Tommy’s National Centre for Miscarriage Research, University
Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, U.K.
| | - Ahmed M. Eissa
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Polymers, Chemical Industries Research Division, National Research
Centre, El Bohouth St.
33, Dokki, Cairo Giza 12622, Egypt
- School
of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, U.K.
| |
Collapse
|
3
|
Patiño-García D, Palomino J, Pomés C, Celle C, Torres-Estay V, Orellana R. Estetrol Increases Progesterone Genetic Response without Triggering Common Estrogenic Effects in Endometriotic Cell Lines and Primary Cultures. Biomedicines 2023; 11:biomedicines11041169. [PMID: 37189786 DOI: 10.3390/biomedicines11041169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Estetrol (E4), a natural estrogen produced by the human fetal liver, is actively studied for menopause and breast cancer treatment. It has low side effects and preferential estrogen receptor alpha (ERα) affinity. There are no data about its effects on endometriosis, a common gynecological disease affecting 6-10% of cycling women, generating painful pelvic lesions and infertility. Current combined hormone treatment (progestins and estrogens) is safe and efficient; nevertheless, one-third of patients develop progesterone (P4) resistance and recurrence by reducing P4 receptors (PRs) levels. We aimed to compare E4 and 17β-estradiol (E2) effects using two human endometriotic cell lines (epithelial 11Z and stromal Hs832 cells) and primary cultures from endometriotic patients. We evaluated cell growth (MTS), migration (wound assay), hormone receptors levels (Western blot), and P4 response by PCR array. Compared to E2, E4 did not affect cell growth or migration but increased estrogen receptor alpha (ERα) and PRs, and reduced ERβ. Finally, the incubation with E4 improved the P4 gene response. In conclusion, E4 increased PRs levels and genetic response without inducing cell growth or migration. These results suggest that E4 might be useful for endometriosis treatment avoiding P4 resistance; however, evaluating its response in more complex models is required.
Collapse
Affiliation(s)
- Daniel Patiño-García
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370874, Chile
- División de Ginecología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
| | - Jaime Palomino
- Escuela de Medicina Veterinaria, Facultad de Ciencias Médicas, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370874, Chile
| | - Cristián Pomés
- División de Ginecología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
| | - Claudia Celle
- División de Ginecología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
| | - Verónica Torres-Estay
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370874, Chile
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Bellavista 7, Santiago 8420524, Chile
| | - Renán Orellana
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370874, Chile
- Programa de Magíster en Ciencias Químico Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O'Higgins, General Gana 1702, Santiago 8370874, Chile
| |
Collapse
|
4
|
Kuroda K, Matsumoto A, Horikawa T, Takamizawa S, Ochiai A, Kawamura K, Nakagawa K, Sugiyama R. Transcriptomic profiling analysis of human endometrial stromal cells treated with autologous platelet-rich plasma. Reprod Med Biol 2023; 22:e12498. [PMID: 36704119 PMCID: PMC9868347 DOI: 10.1002/rmb2.12498] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
Purpose To clarify the mechanisms of intrauterine platelet-rich plasma (PRP) infusion that support embryo implantation in in vitro fertilization treatment. Methods Blood and endometrial samples were collected from four infertile women. Human endometrial stromal cells (HESCs) were cultured and passaged equally into four cell culture dishes in each patient. Two were treated with PRP twice, and the other two were treated with vehicle. Subsequently, two cultures with and without PRP were decidualized with 8-bromoadenosine 3',5'-cyclic AMP and progesterone for 5 days. Results The gene expression in undifferentiated or decidualized HESCs with and without PRP was compared. In the microarray analysis, 381 and 63 differentially expressed genes were detected in undifferentiated and decidualized HESCs, respectively. In the undifferentiated HESCs, PRP was found to promote the gene expression associated with cell growth, tissue regeneration, proinflammatory response, and antibiotic effects. In decidualized HESCs, PRP was found to attenuate the gene expression involved in cell proliferation and inflammation by inhibiting the expression of phosphoinositide 3-kinase signaling. Conclusions Platelet-rich plasma regulates the reprogramming of cell proliferation and inflammation depending on menstrual cycle phases in an appropriate manner, suggesting that PRP has the potential to increase endometrial thickness in the proliferative phase and improve immune tolerance in the secretory phase.
Collapse
Affiliation(s)
- Keiji Kuroda
- Center for Reproductive Medicine and EndoscopySugiyama Clinic MarunouchiTokyoJapan
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Akemi Matsumoto
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Takashi Horikawa
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Satoru Takamizawa
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Asako Ochiai
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Kazuhiro Kawamura
- Department of Obstetrics and GynaecologyJuntendo University Faculty of MedicineTokyoJapan
| | - Koji Nakagawa
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| | - Rikikazu Sugiyama
- Centre for Reproductive Medicine and Implantation ResearchSugiyama Clinic ShinjukuTokyoJapan
| |
Collapse
|
5
|
Tavares M, Khandelwal G, Muter J, Viiri K, Beltran M, Brosens JJ, Jenner RG. JAZF1-SUZ12 dysregulates PRC2 function and gene expression during cell differentiation. Cell Rep 2022; 39:110889. [PMID: 35649353 PMCID: PMC9637993 DOI: 10.1016/j.celrep.2022.110889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/04/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) methylates histone H3 lysine 27 (H3K27me3) to maintain gene repression and is essential for cell differentiation. In low-grade endometrial stromal sarcoma (LG-ESS), the PRC2 subunit SUZ12 is often fused with the NuA4/TIP60 subunit JAZF1. We show that JAZF1-SUZ12 dysregulates PRC2 composition, genome occupancy, histone modification, gene expression, and cell differentiation. Loss of the SUZ12 N terminus in the fusion protein abrogates interaction with specific PRC2 accessory factors, reduces occupancy at PRC2 target genes, and diminishes H3K27me3. Fusion to JAZF1 increases H4Kac at PRC2 target genes and triggers recruitment to JAZF1 binding sites during cell differentiation. In human endometrial stromal cells, JAZF1-SUZ12 upregulated PRC2 target genes normally activated during decidualization while repressing genes associated with immune clearance, and JAZF1-SUZ12-induced genes were also overexpressed in LG-ESS. These results reveal defects in chromatin regulation, gene expression, and cell differentiation caused by JAZF1-SUZ12 that may underlie its role in oncogenesis.
Collapse
Affiliation(s)
- Manuel Tavares
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Garima Khandelwal
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Joanne Muter
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keijo Viiri
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Manuel Beltran
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK
| | - Jan J Brosens
- Warwick Medical School, Division of Biomedical Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
6
|
Mann ON, Kong CS, Lucas ES, Brosens JJ, Hanyaloglu AC, Brighton PJ. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci Rep 2022; 12:8624. [PMID: 35597810 PMCID: PMC9124191 DOI: 10.1038/s41598-022-12495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
The human luteinising hormone choriogonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR expression has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity, and we identified a small subpopulation of stromal cells with detectable LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild-type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.
Collapse
Affiliation(s)
- O N Mann
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - C-S Kong
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - E S Lucas
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - P J Brighton
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.
| |
Collapse
|
7
|
Dore M, Filoche S, Danielson K, Henry C. Characterisation of Levonorgestrel-Resistant Endometrial Cancer Cells. Cancer Manag Res 2021; 13:7871-7884. [PMID: 34703309 PMCID: PMC8523362 DOI: 10.2147/cmar.s327381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Endometrial cancer (EC) is the most common gynaecologic malignancy in the developed world, and incidence is increasing in premenopausal women. The levonorgestrel intrauterine system (LNG-IUS) is gaining traction as an alternative treatment for hyperplasia and early-stage EC for women who are unable to undergo surgery. Thirty to 60% of the women do not respond to this treatment, making the unknown mechanisms of levonorgestrel (LNG) resistance a critical obstacle for the conservative management of EC. This study aimed to characterise LNG-IUS treatment resistance in early-stage endometrial cancer in cell-line models. Methods LNG-resistant endometrial cancer cell lines (MFE296R and MFE319R) and cultures from three early stage endometrial cancer patients were developed. The behavioural profile of MFE296R and MFE319R was analysed using proliferation, adhesion, migration (wound healing and transwell) and invasion (spheroid) assays. LNG-sensitive cell lines (MFE296S and MFE319S) were compared to LNGR cell lines (MFE296R and MFE319R). A literature search was conducted to identify possible candidate biomarkers of LNG resistance. RT-qPCR was used to analyse the mRNA expression of 17 candidate biomarkers in MFE296R and MFE319R. mRNA expression of the top differentially expressed genes was measured using RT-qPCR in primary cultures. Results LNG resistance did not affect proliferation or invasion in immortalised endometrial cancer cells. Transwell migration was significantly increased in MFE319R cells (p=0.03). Cellular adhesion significantly decreased in both MFE296R cells (p=0.012) and MFE319R cells (p=0.04). mRNA expression of KLF4 and SATB2 was significantly amplified in MFE296R and MFE319R cells. mRNA expression of KLF4 was significantly upregulated LNG-resistant primary cell lines. Conclusion LNG-resistant cells may have more oncogenic potential than their LNG-sensitive counterparts. Significant changes in the mRNA expression of KLF4 and SATB2 of LNG-resistant cells is a promising preliminary result in biomarker discovery for guiding LNG-IUS treatment of early stage endometrial cancer.
Collapse
Affiliation(s)
- Molly Dore
- Department of Obstetrics, Gynaecology & Women's Health, University of Otago, Wellington, New Zealand
| | - Sara Filoche
- Department of Obstetrics, Gynaecology & Women's Health, University of Otago, Wellington, New Zealand
| | - Kirsty Danielson
- Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand
| | - Claire Henry
- Department of Obstetrics, Gynaecology & Women's Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
8
|
Mika K, Marinić M, Singh M, Muter J, Brosens JJ, Lynch VJ. Evolutionary transcriptomics implicates new genes and pathways in human pregnancy and adverse pregnancy outcomes. eLife 2021; 10:e69584. [PMID: 34623259 PMCID: PMC8660021 DOI: 10.7554/elife.69584] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Evolutionary changes in the anatomy and physiology of the female reproductive system underlie the origins and diversification of pregnancy in Eutherian ('placental') mammals. This developmental and evolutionary history constrains normal physiological functions and biases the ways in which dysfunction contributes to reproductive trait diseases and adverse pregnancy outcomes. Here, we show that gene expression changes in the human endometrium during pregnancy are associated with the evolution of human-specific traits and pathologies of pregnancy. We found that hundreds of genes gained or lost endometrial expression in the human lineage. Among these are genes that may contribute to human-specific maternal-fetal communication (HTR2B) and maternal-fetal immunotolerance (PDCD1LG2) systems, as well as vascular remodeling and deep placental invasion (CORIN). These data suggest that explicit evolutionary studies of anatomical systems complement traditional methods for characterizing the genetic architecture of disease. We also anticipate our results will advance the emerging synthesis of evolution and medicine ('evolutionary medicine') and be a starting point for more sophisticated studies of the maternal-fetal interface. Furthermore, the gene expression changes we identified may contribute to the development of diagnostics and interventions for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Katelyn Mika
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Mirna Marinić
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, University of ChicagoChicagoUnited States
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell UniversityChicagoUnited States
| | - Joanne Muter
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Jan Joris Brosens
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & WarwickshireCoventryUnited Kingdom
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwic Medical School, University of WarwickBuffaloUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
9
|
Rawlings TM, Makwana K, Taylor DM, Molè MA, Fishwick KJ, Tryfonos M, Odendaal J, Hawkes A, Zernicka-Goetz M, Hartshorne GM, Brosens JJ, Lucas ES. Modelling the impact of decidual senescence on embryo implantation in human endometrial assembloids. eLife 2021; 10:e69603. [PMID: 34487490 PMCID: PMC8523170 DOI: 10.7554/elife.69603] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.
Collapse
Affiliation(s)
- Thomas M Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Komal Makwana
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Deborah M Taylor
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS TrustCoventryUnited Kingdom
| | - Matteo A Molè
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Maria Tryfonos
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| | - Joshua Odendaal
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Amelia Hawkes
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
- Synthetic Mouse and Human Embryology Group, California Institute of Technology (Caltech), Division of Biology and Biological EngineeringPasadenaUnited Kingdom
| | - Geraldine M Hartshorne
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS TrustCoventryUnited Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS TrustCoventryUnited Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of WarwickCoventryUnited Kingdom
- Centre for Early Life, Warwick Medical School, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
10
|
Kong CS, Ordoñez AA, Turner S, Tremaine T, Muter J, Lucas ES, Salisbury E, Vassena R, Tiscornia G, Fouladi-Nashta AA, Hartshorne G, Brosens JJ, Brighton PJ. Embryo biosensing by uterine natural killer cells determines endometrial fate decisions at implantation. FASEB J 2021; 35:e21336. [PMID: 33749894 PMCID: PMC8251835 DOI: 10.1096/fj.202002217r] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Decidualizing endometrial stromal cells (EnSC) critically determine the maternal response to an implanting conceptus, triggering either menstruation-like disposal of low-fitness embryos or creating an environment that promotes further development. However, the mechanism that couples maternal recognition of low-quality embryos to tissue breakdown remains poorly understood. Recently, we demonstrated that successful transition of the cycling endometrium to a pregnancy state requires selective elimination of pro-inflammatory senescent decidual cells by activated uterine natural killer (uNK) cells. Here we report that uNK cells express CD44, the canonical hyaluronan (HA) receptor, and demonstrate that high molecular weight HA (HMWHA) inhibits uNK cell-mediated killing of senescent decidual cells. In contrast, low molecular weight HA (LMWHA) did not attenuate uNK cell activity in co-culture experiments. Killing of senescent decidual cells by uNK cells was also inhibited upon exposure to medium conditioned by IVF embryos that failed to implant, but not successful embryos. Embryo-mediated inhibition of uNK cell activity was reversed by recombinant hyaluronidase 2 (HYAL2), which hydrolyses HMWHA. We further report a correlation between the levels of HYAL2 secretion by human blastocysts, morphological scores, and implantation potential. Taken together, the data suggest a pivotal role for uNK cells in embryo biosensing and endometrial fate decisions at implantation.
Collapse
Affiliation(s)
- Chow-Seng Kong
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | | | - Sarah Turner
- Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Tina Tremaine
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Joanne Muter
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Emma S Lucas
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emma Salisbury
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | | - Ali A Fouladi-Nashta
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Geraldine Hartshorne
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Jan J Brosens
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
| | - Paul J Brighton
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
11
|
Mackens S, Santos-Ribeiro S, Racca A, Daneels D, Koch A, Essahib W, Verpoest W, Bourgain C, Van Riet I, Tournaye H, Brosens JJ, Lee YH, Blockeel C, Van de Velde H. The proliferative phase endometrium in IVF/ICSI: an in-cycle molecular analysis predictive of the outcome following fresh embryo transfer. Hum Reprod 2021; 35:130-144. [PMID: 31916571 DOI: 10.1093/humrep/dez218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does an early proliferative phase endometrial biopsy harvested during ovarian stimulation harbour information predictive of the outcome following fresh embryo transfer (ET) in that same cycle? SUMMARY ANSWER Transcriptome analysis of the whole-tissue endometrium did not reveal significant differential gene expression (DGE) in relation to the outcome; however, the secretome profile of isolated, cultured and in vitro decidualized endometrial stromal cells (EnSCs) varied significantly between patients who had a live birth compared to those with an implantation failure following fresh ET in the same cycle as the biopsy. WHAT IS KNOWN ALREADY In the majority of endometrial receptivity research protocols, biopsies are harvested during the window of implantation (WOI). This, however, precludes ET in that same cycle, which is preferable as the endometrium has been shown to adapt over time. Endometrial biopsies taken during ovarian stimulation have been reported not to harm the chances of implantation, and in such biopsies DGE has been observed between women who achieve pregnancy versus those who do not. The impact of the endometrial proliferative phase on human embryo implantation remains unclear, but deserves further attention, especially since in luteal phase endometrial biopsies, a transcriptional signature predictive for repeated implantation failure has been associated with reduced cell proliferation, possibly indicating proliferative phase involvement. Isolation, culture and in vitro decidualization (IVD) of EnSCs is a frequently applied basic research technique to assess endometrial functioning, and a disordered EnSC secretome has previously been linked with failed implantation. STUDY DESIGN, SIZE, DURATION This study was nested in a randomized controlled trial (RCT) investigating the effect of endometrial scratching during the early follicular phase of ovarian stimulation on clinical pregnancy rates after IVF/ICSI. Of the 96 endometrial biopsies available, after eliminating those without fresh ET and after extensive matching in order to minimize the risk of potential confounding, 18 samples were retained to study two clinical groups: nine biopsies of patients with a live birth versus nine biopsies of patients with an implantation failure, both following fresh ET performed in the same cycle as the biopsy. We studied the proliferative endometrium by analysing its transcriptome and by isolating, culturing and decidualizing EnSCs in vitro. We applied this latter technique for the first time on proliferative endometrial biopsies obtained during ovarian stimulation for in-cycle outcome prediction, in an attempt to overcome inter-cycle variability. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA-sequencing was performed for 18 individual whole-tissue endometrial biopsies on an Illumina HiSeq1500 machine. DGE was analysed three times using different approaches (DESeq2, EdgeR and the Wilcoxon rank-sum test, all in R). EnSC isolation and IVD was performed (for 2 and 4 days) for a subset of nine samples, after which media from undifferentiated and decidualized cultures were harvested, stored at -80°C and later assayed for 45 cytokines using a multiplex suspension bead immunoassay. The analysis was performed by partial least squares regression modelling. MAIN RESULTS AND THE ROLE OF CHANCE After correction for multiple hypothesis testing, DGE analysis revealed no significant differences between endometrial samples from patients who had a live birth and those with an implantation failure following fresh ET. However secretome analysis after EnSC isolation and culture, showed two distinct clusters that clearly corresponded to the two clinical groups. Upon IVD, the secretome profiles shifted from that of undifferentiated cells but the difference between the two clinical groups remained yet were muted, suggesting convergence of cytokine profiles after decidualization. LIMITATIONS, REASONS FOR CAUTION Caution is warranted due to the limited sample size of the study and the in vitro nature of the EnSC experiment. Validation on a larger scale is necessary, however, hard to fulfil given the very limited availability of in-cycle proliferative endometrial biopsies outside a RCT setting. WIDER IMPLICATIONS OF THE FINDINGS These data support the hypothesis that the endometrium should be assessed not only during the WOI and that certain endometrial dysfunctionalities can probably be detected early in a cycle by making use of the proliferative phase. This insight opens new horizons for the development of endometrial tests, whether diagnostic or predictive of IVF/ICSI treatment outcome. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Fonds Wetenschappelijk Onderzoek (FWO, Flanders, Belgium, 11M9415N, 1 524 417N), Wetenschappelijk Fonds Willy Gepts (WFWG G160, Universitair Ziekenhuis Brussel, Belgium) and the National Medicine Research Council (NMRC/CG/M003/2017, Singapore). There are no conflicts of interests. TRIAL REGISTRATION NUMBER NCT02061228.
Collapse
Affiliation(s)
- S Mackens
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - S Santos-Ribeiro
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,IVI-RMA Lisboa, Avenida Infante Dom Henrique 333 H 1-9, 1800-282 Lisbon, Portugal
| | - A Racca
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - D Daneels
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - A Koch
- Department of Pathology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - W Essahib
- Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - W Verpoest
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - C Bourgain
- Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Department of Pathology, Imelda Ziekenhuis Bonheiden, Bonheiden, Belgium
| | - I Van Riet
- Department of Hematology and Immunology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - H Tournaye
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, UK
| | - Y H Lee
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore.,Obstetrics & Gynaecology-Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - C Blockeel
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - H Van de Velde
- Centre for Reproductive Medicine, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Research group Reproduction and Immunology (REIM), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
12
|
Diniz-da-Costa M, Kong CS, Fishwick KJ, Rawlings T, Brighton PJ, Hawkes A, Odendaal J, Quenby S, Ott S, Lucas ES, Vrljicak P, Brosens JJ. Characterization of highly proliferative decidual precursor cells during the window of implantation in human endometrium. STEM CELLS (DAYTON, OHIO) 2021; 39:1067-1080. [PMID: 33764639 DOI: 10.1002/stem.3367] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/19/2021] [Indexed: 11/09/2022]
Abstract
Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.
Collapse
Affiliation(s)
- Maria Diniz-da-Costa
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Chow-Seng Kong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Thomas Rawlings
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Amelia Hawkes
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Joshua Odendaal
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, UK.,Centre for Early Life, University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Gharanei S, Fishwick K, Peter Durairaj R, Jin T, Siamantouras E, Liu KK, Straube A, Lucas ES, Weston CJ, Rantakari P, Salmi M, Jalkanen S, Brosens JJ, Tan BK. Vascular Adhesion Protein-1 Determines the Cellular Properties of Endometrial Pericytes. Front Cell Dev Biol 2021; 8:621016. [PMID: 33537312 PMCID: PMC7848099 DOI: 10.3389/fcell.2020.621016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule and a primary amine oxidase involved in immune cell trafficking. Leukocyte extravasation into tissues is mediated by adhesion molecules expressed on endothelial cells and pericytes. Pericytes play a major role in the angiogenesis and vascularization of cycling endometrium. However, the functional properties of pericytes in the human endometrium are not known. Here we show that pericytes surrounding the spiral arterioles in midluteal human endometrium constitutively express VAP-1. We first characterize these pericytes and demonstrate that knockdown of VAP-1 perturbed their biophysical properties and compromised their contractile, migratory, adhesive and clonogenic capacities. Furthermore, we show that loss of VAP-1 disrupts pericyte-uterine natural killer cell interactions in vitro. Taken together, the data not only reveal that endometrial pericytes represent a cell population with distinct biophysical and functional properties but also suggest a pivotal role for VAP-1 in regulating the recruitment of innate immune cells in human endometrium. We posit that VAP-1 could serve as a potential biomarker for pregnancy pathologies caused by a compromised perivascular environment prior to conception.
Collapse
Affiliation(s)
- Seley Gharanei
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | | | | | - Tianrong Jin
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Anne Straube
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
| | - Emma S. Lucas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, Coventry, United Kingdom
| | - Christopher J. Weston
- Centre for Liver Research & National Institute for Health Research Birmingham Biomedical Research Unit, Level 5 Institute for Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | - Pia Rantakari
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marko Salmi
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- Medicity Research Laboratory and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jan J. Brosens
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, Coventry, United Kingdom
| | - Bee Kang Tan
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- Department of Obstetrics and Gynaecology, University Hospitals of Leicester National Health Service Trust, Leicester, United Kingdom
| |
Collapse
|
14
|
Tewary S, Lucas ES, Fujihara R, Kimani PK, Polanco A, Brighton PJ, Muter J, Fishwick KJ, Da Costa MJMD, Ewington LJ, Lacey L, Takeda S, Brosens JJ, Quenby S. Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells: A randomised, double-blind placebo-controlled feasibility trial. EBioMedicine 2020; 51:102597. [PMID: 31928963 PMCID: PMC7000352 DOI: 10.1016/j.ebiom.2019.102597] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/17/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. METHODS A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. FINDINGS CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32-1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. INTERPRETATION Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. FUNDING Tommy's Baby Charity. CLINICAL TRIAL REGISTRATION EU Clinical Trials Register no. 2016-001120-54.
Collapse
Affiliation(s)
- Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Department of Obstetrics & Gynaecology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Peter K Kimani
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Angela Polanco
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Katherine J Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Maria José Minhoto Diniz Da Costa
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Lauren Lacey
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics & Gynaecology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK; Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry CV2 2DX, UK.
| |
Collapse
|
15
|
Ochiai A, Kuroda K, Ozaki R, Ikemoto Y, Murakami K, Muter J, Matsumoto A, Itakura A, Brosens JJ, Takeda S. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 2019; 10:276. [PMID: 30894514 PMCID: PMC6427032 DOI: 10.1038/s41419-019-1511-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Pregnancy critically depends on the transformation of the human endometrium into a decidual matrix that controls embryo implantation and placenta formation, a process driven foremost by differentiation and polarization of endometrial stromal cells into mature and senescent decidual cells. Perturbations in the decidual process underpin a spectrum of prevalent reproductive disorders, including implantation failure and early pregnancy loss, emphasizing the need for new therapeutic interventions. Resveratrol is a naturally occurring polyphenol, widely used for its antioxidant and anti-inflammatory properties. Using primary human endometrial stromal cell (HESC) cultures, we demonstrate that resveratrol has anti-deciduogenic properties, repressing not only the induction of the decidual marker genes PRL and IGFBP1 but also abrogating decidual senescence. Knockdown of Sirtuin 1, a histone deacetylase activated by resveratrol, restored the expression of IGFBP1 but not the induction of PRL or senescence markers in decidualizing HESCs, suggesting involvement of other pathways. We demonstrate that resveratrol interferes with the reprogramming of the retinoic acid signaling pathway in decidualizing HESCs by accelerating down-regulation of cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor (RAR). Notably, knockdown of CRABP2 or RAR in HESCs was sufficient to recapitulate the anti-deciduogenic effects of resveratrol. Thus, while resveratrol has been advanced as a potential fertility drug, our results indicate it may have detrimental effects on embryo implantation by interfering with decidual remodeling of the endometrium.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keiji Kuroda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, 116-0023, Japan.
| | - Rie Ozaki
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuko Ikemoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keisuke Murakami
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Joanne Muter
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
| | - Akemi Matsumoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Jan J Brosens
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
16
|
Richardson SA, Rawlings TM, Muter J, Walker M, Brosens JJ, Cameron NR, Eissa AM. Covalent Attachment of Fibronectin onto Emulsion-Templated Porous Polymer Scaffolds Enhances Human Endometrial Stromal Cell Adhesion, Infiltration, and Function. Macromol Biosci 2018; 19:e1800351. [PMID: 30548765 DOI: 10.1002/mabi.201800351] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Indexed: 11/08/2022]
Abstract
A novel strategy for the surface functionalization of emulsion-templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine-reactive N-hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N-sulfosuccinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate (sulfo-SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6-aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis-amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X-ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion-promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin-conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types.
Collapse
Affiliation(s)
- Sarah A Richardson
- S. A. Richardson, Dr. A. M. Eissa, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Thomas M Rawlings
- T. M. Rawlings, Dr. J. Muter, Prof. J. J. Brosens, Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Joanne Muter
- T. M. Rawlings, Dr. J. Muter, Prof. J. J. Brosens, Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Marc Walker
- Dr. M. Walker, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan J Brosens
- T. M. Rawlings, Dr. J. Muter, Prof. J. J. Brosens, Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Neil R Cameron
- Prof. N. R. Cameron, Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria, Australia.,Dr. A. M. Eissa, Prof. N. R. Cameron, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Ahmed M Eissa
- S. A. Richardson, Dr. A. M. Eissa, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Dr. A. M. Eissa, Prof. N. R. Cameron, School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.,Dr. A. M. Eissa, Department of Polymers, Chemical Industries Research Division, National Research Centre, El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt
| |
Collapse
|
17
|
Eissa AM, Barros FSV, Vrljicak P, Brosens JJ, Cameron NR. Enhanced Differentiation Potential of Primary Human Endometrial Cells Cultured on 3D Scaffolds. Biomacromolecules 2018; 19:3343-3350. [DOI: 10.1021/acs.biomac.8b00635] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ahmed M. Eissa
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria Australia
- Department of Polymers, Chemical Industries Research Division, National Research Centre (NRC), El Bohouth St. 33, Dokki, Giza, 12622, Cairo, Egypt
| | - Flavio S. V. Barros
- Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry, and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry, and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Jan J. Brosens
- Division of Biomedical Sciences, Reproductive Health Unit, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick and Tommy’s National Centre for Miscarriage Research, University Hospitals Coventry, and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, Clayton, 3800, Victoria Australia
| |
Collapse
|
18
|
Muter J, Alam MT, Vrljicak P, Barros FSV, Ruane PT, Ewington LJ, Aplin JD, Westwood M, Brosens JJ. The Glycosyltransferase EOGT Regulates Adropin Expression in Decidualizing Human Endometrium. Endocrinology 2018; 159:994-1004. [PMID: 29244071 DOI: 10.1210/en.2017-03064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
In pregnancy, resistance of endometrial decidual cells to stress signals is critical for the integrity of the fetomaternal interface and, by extension, survival of the conceptus. O-GlcNAcylation is an essential posttranslational modification that links glucose sensing to cellular stress resistance. Unexpectedly, decidualization of primary endometrial stromal cells (EnSCs) was associated with a 60% reduction in O-linked β-N-acetylglucosamine (O-GlcNAc)‒modified proteins, reflecting downregulation of the enzyme that adds O-GlcNAc to substrates (O-GlcNAc transferase; OGT) but not the enzyme that removes the modification (O-GlcNAcase). Notably, epidermal growth factor domain-specific O-linked GlcNAc transferase (EOGT), an endoplasmic reticulum-specific OGT that modifies a limited number of secreted and membrane proteins, was markedly induced in differentiating EnSCs. Knockdown of EOGT perturbed a network of decidual genes involved in multiple cellular functions. The most downregulated gene upon EOGT knockdown in decidualizing cells was the energy homeostasis-associated gene (ENHO), which encodes adropin, a metabolic hormone involved in energy homeostasis and glucose and fatty acid metabolism. Analysis of midluteal endometrial biopsies revealed an inverse correlation between endometrial EOGT and ENHO expression and body mass index. Taken together, our findings revealed that obesity impairs the EOGT-adropin axis in decidual cells, which in turn points toward a mechanistic link between metabolic disorders and adverse pregnancy outcome.
Collapse
Affiliation(s)
- Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad T Alam
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Flavio S V Barros
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Peter T Ruane
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Lauren J Ewington
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Melissa Westwood
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary's Hospital, Manchester, United Kingdom
- Maternal and Fetal Health Research Centre, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jan J Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| |
Collapse
|
19
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|