1
|
Khan HA, Van Hateren N, Borycki AG. Light-Sheet Microscopy Enables Three-Dimensional Fluorescence Imaging and Live Imaging of Satellite Cells on Skeletal Muscle Fibers. Methods Mol Biol 2024. [PMID: 38997538 DOI: 10.1007/7651_2024_552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The ex vivo myofiber culture system has proven to be a useful methodology to explore the biology and behavior of satellite cells within their niche environment. However, a limitation of this system is that myofibers and their associated satellite cells are commonly examined using conventional fluorescence microscopy, which renders a three-dimensional system into two-dimensional imaging, leading to the loss of precious information or misleading interpretation of observations. Here, we report on the use of light-sheet fluorescence microscopy to generate three-dimensional and live imaging of satellite cells on myofibers. Light-sheet microscopy offers high imaging speed and good spatial resolution with minimal photo-bleaching, allowing live imaging and three-dimensional acquisition of skeletal muscle fiber specimen. The potentials of this technology are wide, ranging from the visualization of satellite cell behavior such as cell division and cell migration to imaging the sub-cellular localization of proteins or organelles.
Collapse
Affiliation(s)
- Hira Asif Khan
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nick Van Hateren
- The Wolfson Light Microscopy Facility, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Anne-Gaëlle Borycki
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| |
Collapse
|
2
|
Karthikeyan S, Asakura A. Imaging analysis for muscle stem cells and regeneration. Front Cell Dev Biol 2024; 12:1411401. [PMID: 38774645 PMCID: PMC11106391 DOI: 10.3389/fcell.2024.1411401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Composed of a diverse variety of cells, the skeletal muscle is one of the body's tissues with the remarkable ability to regenerate after injury. One of the key players in the regeneration process is the muscle satellite cell (MuSC), a stem cell population for skeletal muscle, as it is the source of new myofibers. Maintaining MuSC quiescence during homeostasis involves complex interactions between MuSCs and other cells in their corresponding niche in adult skeletal muscle. After the injury, MuSCs are activated to enter the cell cycle for cell proliferation and differentiate into myotubes, followed by mature myofibers to regenerate muscle. Despite decades of research, the exact mechanisms underlying MuSC maintenance and activation remain elusive. Traditional methods of analyzing MuSCs, including cell cultures, animal models, and gene expression analyses, provide some insight into MuSC biology but lack the ability to replicate the 3-dimensional (3-D) in vivo muscle environment and capture dynamic processes comprehensively. Recent advancements in imaging technology, including confocal, intra-vital, and multi-photon microscopies, provide promising avenues for dynamic MuSC morphology and behavior to be observed and characterized. This chapter aims to review 3-D and live-imaging methods that have contributed to uncovering insights into MuSC behavior, morphology changes, interactions within the muscle niche, and internal signaling pathways during the quiescence to activation (Q-A) transition. Integrating advanced imaging modalities and computational tools provides a new avenue for studying complex biological processes in skeletal muscle regeneration and muscle degenerative diseases such as sarcopenia and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Smrithi Karthikeyan
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, United States
- Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
3
|
Sun KX, Jiang XY, Li X, Su YJ, Wang JL, Zhang L, Yang YM, Zhu XJ. Deletion of phosphatidylserine flippase β-subunit Tmem30a in satellite cells leads to delayed skeletal muscle regeneration. Zool Res 2021; 42:650-659. [PMID: 34472226 PMCID: PMC8455468 DOI: 10.24272/j.issn.2095-8137.2021.195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The β subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null (mdx) mice and BaCl2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl2-injection. Compared to the control mice, the cKO mice showed decreased Pax7+ and MYH3+ SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Kuan-Xiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China
| | - Xiao-Yan Jiang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiao Li
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu-Jing Su
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ju-Lin Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Ye-Ming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xian-Jun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China.,Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu, Henan 476000, China.,Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China. E-mail:
| |
Collapse
|