1
|
Aguadé-Gorgorió J, McComb S, Eckert C, Guinot A, Marovca B, Mezzatesta C, Jenni S, Abduli L, Schrappe M, Dobay MP, Stanulla M, von Stackelberg A, Cario G, Bourquin JP, Bornhauser BC. TNFR2 is required for RIP1-dependent cell death in human leukemia. Blood Adv 2020; 4:4823-4833. [PMID: 33027529 PMCID: PMC7556136 DOI: 10.1182/bloodadvances.2019000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Despite major advances in the treatment of patients with acute lymphoblastic leukemia in the last decades, refractory and/or relapsed disease remains a clinical challenge, and relapsed leukemia patients have an exceedingly dismal prognosis. Dysregulation of apoptotic cell death pathways is a leading cause of drug resistance; thus, alternative cell death mechanisms, such as necroptosis, represent an appealing target for the treatment of high-risk malignancies. We and other investigators have shown that activation of receptor interacting protein kinase 1 (RIP1)-dependent apoptosis and necroptosis by second mitochondria derived activator of caspase mimetics (SMs) is an attractive antileukemic strategy not currently exploited by standard chemotherapy. However, the underlying molecular mechanisms that determine sensitivity to SMs have remained elusive. We show that tumor necrosis factor receptor 2 (TNFR2) messenger RNA expression correlates with sensitivity to SMs in primary human leukemia. Functional genetic experiments using clustered regularly interspaced short palindromic repeats/Cas9 demonstrate that TNFR2 and TNFR1, but not the ligand TNF-α, are essential for the response to SMs, revealing a ligand-independent interplay between TNFR1 and TNFR2 in the induction of RIP1-dependent cell death. Further potential TNFR ligands, such as lymphotoxins, were not required for SM sensitivity. Instead, TNFR2 promotes the formation of a RIP1/TNFR1-containing death signaling complex that induces RIP1 phosphorylation and RIP1-dependent apoptosis and necroptosis. Our data reveal an alternative paradigm for TNFR2 function in cell death signaling and provide a rationale to develop strategies for the identification of leukemias with vulnerability to RIP1-dependent cell death for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Júlia Aguadé-Gorgorió
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Scott McComb
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Medical University Berlin, Berlin, Germany
| | - Anna Guinot
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Blerim Marovca
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Caterina Mezzatesta
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Liridon Abduli
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Martin Schrappe
- Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Maria Pamela Dobay
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology/Hematology, Charité Medical University Berlin, Berlin, Germany
| | - Gunnar Cario
- Department of General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany; and
| | - Jean-Pierre Bourquin
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| | - Beat C Bornhauser
- Department of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
McComb S, Chan PK, Guinot A, Hartmannsdottir H, Jenni S, Dobay MP, Bourquin JP, Bornhauser BC. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. SCIENCE ADVANCES 2019; 5:eaau9433. [PMID: 31392262 PMCID: PMC6669006 DOI: 10.1126/sciadv.aau9433] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/26/2019] [Indexed: 05/15/2023]
Abstract
Apoptosis is a complex multi-step process driven by caspase-dependent proteolytic cleavage cascades. Dysregulation of apoptosis promotes tumorigenesis and limits the efficacy of chemotherapy. To assess the complex interactions among caspases during apoptosis, we disrupted caspase-8, -9, -3, -7, or -6 and combinations thereof, using CRISPR-based genome editing in living human leukemia cells. While loss of apical initiator caspase-8 or -9 partially blocked extrinsic or intrinsic apoptosis, respectively, only combined loss of caspase-3 and -7 fully inhibited both apoptotic pathways, with no discernible effect of caspase-6 deficiency alone or in combination. Caspase-3/7 double knockout cells exhibited almost complete inhibition of caspase-8 or -9 activation. Furthermore, deletion of caspase-3 and -7 decreased mitochondrial depolarization and cytochrome c release upon apoptosis activation. Thus, activation of effector caspase-3 or -7 sets off explosive feedback amplification of upstream apoptotic events, which is a key feature of apoptotic signaling essential for efficient apoptotic cell death.
Collapse
Affiliation(s)
- Scott McComb
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Pik Ki Chan
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Anna Guinot
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Holmfridur Hartmannsdottir
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Silvia Jenni
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Maria Pamela Dobay
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
- IQVIA Technology and Services AG Theaterstrasse 4, 4051 Basel, Switzerland
| | - Jean-Pierre Bourquin
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Beat C. Bornhauser
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| |
Collapse
|