1
|
Liu H, Yan P, Zhang Z, Han H, Zhou Q, Zheng J, Zhang J, Xu F, Shui W. Structural Mass Spectrometry Captures Residue-Resolved Comprehensive Conformational Rearrangements of a G Protein-Coupled Receptor. J Am Chem Soc 2024; 146:20045-20058. [PMID: 39001877 DOI: 10.1021/jacs.4c03922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
G protein-coupled receptor (GPCR) structural studies with in-solution spectroscopic approaches have offered distinctive insights into GPCR activation and signaling that highly complement those yielded from structural snapshots by crystallography or cryo-EM. While most current spectroscopic approaches allow for probing structural changes at selected residues or loop regions, they are not suitable for capturing a holistic view of GPCR conformational rearrangements across multiple domains. Herein, we develop an approach based on limited proteolysis mass spectrometry (LiP-MS) to simultaneously monitor conformational alterations of a large number of residues spanning both flexible loops and structured transmembrane domains for a given GPCR. To benchmark LiP-MS for GPCR conformational profiling, we studied the adenosine 2A receptor (A2AR) in response to different ligand binding (agonist/antagonist/allosteric modulators) and G protein coupling. Systematic and residue-resolved profiling of A2AR conformational rearrangements by LiP-MS precisely captures structural mechanisms in multiple domains underlying ligand engagement, receptor activation, and allostery, and may also reflect local conformational flexibility. Furthermore, these residue-resolution structural fingerprints of the A2AR protein allow us to readily classify ligands of different pharmacology and distinguish the G protein-coupled state. Thus, our study provides a new structural MS approach that would be generalizable to characterizing conformational transition and plasticity for challenging integral membrane proteins.
Collapse
Affiliation(s)
- Hongyue Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Yan
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyu Zhang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Han
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Yadav MK, Sarma P, Maharana J, Ganguly M, Mishra S, Zaidi N, Dalal A, Singh V, Saha S, Mahajan G, Sharma S, Chami M, Banerjee R, Shukla AK. Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution. Nat Commun 2024; 15:1939. [PMID: 38431681 PMCID: PMC10908815 DOI: 10.1038/s41467-024-46239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
The Hydroxycarboxylic acid receptor 2 (HCA2), also known as the niacin receptor or GPR109A, is a prototypical GPCR that plays a central role in the inhibition of lipolytic and atherogenic activities. Its activation also results in vasodilation that is linked to the side-effect of flushing associated with dyslipidemia drugs such as niacin. GPR109A continues to be a target for developing potential therapeutics in dyslipidemia with minimized flushing response. Here, we present cryo-EM structures of the GPR109A in complex with dyslipidemia drugs, niacin or acipimox, non-flushing agonists, MK6892 or GSK256073, and recently approved psoriasis drug, monomethyl fumarate (MMF). These structures elucidate the binding mechanism of agonists, molecular basis of receptor activation, and insights into biased signaling elicited by some of the agonists. The structural framework also allows us to engineer receptor mutants that exhibit G-protein signaling bias, and therefore, our study may help in structure-guided drug discovery efforts targeting this receptor.
Collapse
Affiliation(s)
- Manish K Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Parishmita Sarma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Jagannath Maharana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Manisankar Ganguly
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Sudha Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Nashrah Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Annu Dalal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Vinay Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Sayantan Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Gargi Mahajan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Saloni Sharma
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India
| | - Mohamed Chami
- BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland
| | - Ramanuj Banerjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 08016, India.
| |
Collapse
|
3
|
Giraldo J, Madsen JJ, Wang X, Wang L, Zhang C, Ye L. A 19F-qNMR-Guided Mathematical Model for G Protein-Coupled Receptor Signaling. Mol Pharmacol 2023; 105:54-62. [PMID: 37907352 PMCID: PMC10739436 DOI: 10.1124/molpharm.123.000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023] Open
Abstract
G protein-coupled receptors (GPCRs) exhibit a wide range of pharmacological efficacies, yet the molecular mechanisms responsible for the differential efficacies in response to various ligands remain poorly understood. This lack of understanding has hindered the development of a solid foundation for establishing a mathematical model for signaling efficacy. However, recent progress has been made in delineating and quantifying receptor conformational states and associating function with these conformations. This progress has allowed us to construct a mathematical model for GPCR signaling efficacy that goes beyond the traditional ON/OFF binary switch model. In this study, we present a quantitative conformation-based mathematical model for GPCR signaling efficacy using the adenosine A2A receptor (A2AR) as a model system, under the guide of 19F quantitative nuclear magnetic resonance experiments. This model encompasses two signaling states, a fully activated state and a partially activated state, defined as being able to regulate the cognate Gα s nucleotide exchange with respective G protein recognition capacity. By quantifying the population distribution of each state, we can now in turn examine GPCR signaling efficacy. This advance provides a foundation for assessing GPCR signaling efficacy using a conformation-based mathematical model in response to ligand binding. SIGNIFICANCE STATEMENT: Mathematical models to describe signaling efficacy of GPCRs mostly suffer from considering only two states (ON/OFF). However, research indicates that a GPCR possesses multiple active-(like) states that can interact with Gαβγ independently, regulating varied nucleotide exchanges. With the guide of 19F-qNMR, the transitions among these states are quantified as a function of ligand and Gαβγ, serving as a foundation for a novel conformation-based mathematical signaling model.
Collapse
Affiliation(s)
- Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Spain; Global and Planetary Health, College of Public Health (J.J.M.), Center for Global Health and Infectious Diseases Research, College of Public Health (J.J.M.), Department of Molecular Medicine, Morsani College of Medicine (J.J.M.), Department of Molecular Biosciences (X.W., L.Y.), University of South Florida, Tampa, Florida; Department of Pharmacology and Chemical Biology, University of PittsburghSchool of Medicine (L.W., C.Z.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (L.Y.)
| | - Jesper J Madsen
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Spain; Global and Planetary Health, College of Public Health (J.J.M.), Center for Global Health and Infectious Diseases Research, College of Public Health (J.J.M.), Department of Molecular Medicine, Morsani College of Medicine (J.J.M.), Department of Molecular Biosciences (X.W., L.Y.), University of South Florida, Tampa, Florida; Department of Pharmacology and Chemical Biology, University of PittsburghSchool of Medicine (L.W., C.Z.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (L.Y.)
| | - Xudong Wang
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Spain; Global and Planetary Health, College of Public Health (J.J.M.), Center for Global Health and Infectious Diseases Research, College of Public Health (J.J.M.), Department of Molecular Medicine, Morsani College of Medicine (J.J.M.), Department of Molecular Biosciences (X.W., L.Y.), University of South Florida, Tampa, Florida; Department of Pharmacology and Chemical Biology, University of PittsburghSchool of Medicine (L.W., C.Z.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (L.Y.)
| | - Lei Wang
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Spain; Global and Planetary Health, College of Public Health (J.J.M.), Center for Global Health and Infectious Diseases Research, College of Public Health (J.J.M.), Department of Molecular Medicine, Morsani College of Medicine (J.J.M.), Department of Molecular Biosciences (X.W., L.Y.), University of South Florida, Tampa, Florida; Department of Pharmacology and Chemical Biology, University of PittsburghSchool of Medicine (L.W., C.Z.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (L.Y.)
| | - Cheng Zhang
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Spain; Global and Planetary Health, College of Public Health (J.J.M.), Center for Global Health and Infectious Diseases Research, College of Public Health (J.J.M.), Department of Molecular Medicine, Morsani College of Medicine (J.J.M.), Department of Molecular Biosciences (X.W., L.Y.), University of South Florida, Tampa, Florida; Department of Pharmacology and Chemical Biology, University of PittsburghSchool of Medicine (L.W., C.Z.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (L.Y.)
| | - Libin Ye
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística and Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Bellaterra, Spain; Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental (J.G.), CIBERSAM, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona (J.G.), Spain; Global and Planetary Health, College of Public Health (J.J.M.), Center for Global Health and Infectious Diseases Research, College of Public Health (J.J.M.), Department of Molecular Medicine, Morsani College of Medicine (J.J.M.), Department of Molecular Biosciences (X.W., L.Y.), University of South Florida, Tampa, Florida; Department of Pharmacology and Chemical Biology, University of PittsburghSchool of Medicine (L.W., C.Z.), University of Pittsburgh, Pittsburgh, Pennsylvania; and Lee Moffitt Cancer Center & Research Institute, Tampa, Florida (L.Y.)
| |
Collapse
|
4
|
Abstract
GPR21 is a class-A orphan G protein-coupled receptor (GPCR) and a potential therapeutic target for type 2 diabetes and other metabolic disorders. This receptor shows high basal activity in coupling to multiple G proteins in the absence of any known endogenous agonist or synthetic ligand. Here, we present the structures of ligand-free human GPR21 bound to heterotrimeric miniGs and miniG15 proteins, respectively. We identified an agonist-like motif in extracellular loop 2 (ECL2) that occupies the orthosteric pocket and promotes receptor activation. A side pocket that may be employed as a new ligand binding site was also uncovered. Remarkably, G protein binding is accommodated by a flexible cytoplasmic portion of transmembrane helix 6 (TM6) which adopts little or undetectable outward movement. These findings will enable the design of modulators for GPR21 for understanding its signal transduction and exploring opportunity for deorphanization.
Collapse
|
5
|
Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK, Tate CG. Molecular basis of β-arrestin coupling to formoterol-bound β 1-adrenoceptor. Nature 2020; 583:862-866. [PMID: 32555462 DOI: 10.1038/s41586-020-2419-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
The β1-adrenoceptor (β1AR) is a G-protein-coupled receptor (GPCR) that couples1 to the heterotrimeric G protein Gs. G-protein-mediated signalling is terminated by phosphorylation of the C terminus of the receptor by GPCR kinases (GRKs) and by coupling of β-arrestin 1 (βarr1, also known as arrestin 2), which displaces Gs and induces signalling through the MAP kinase pathway2. The ability of synthetic agonists to induce signalling preferentially through either G proteins or arrestins-known as biased agonism3-is important in drug development, because the therapeutic effect may arise from only one signalling cascade, whereas the other pathway may mediate undesirable side effects4. To understand the molecular basis for arrestin coupling, here we determined the cryo-electron microscopy structure of the β1AR-βarr1 complex in lipid nanodiscs bound to the biased agonist formoterol5, and the crystal structure of formoterol-bound β1AR coupled to the G-protein-mimetic nanobody6 Nb80. βarr1 couples to β1AR in a manner distinct to that7 of Gs coupling to β2AR-the finger loop of βarr1 occupies a narrower cleft on the intracellular surface, and is closer to transmembrane helix H7 of the receptor when compared with the C-terminal α5 helix of Gs. The conformation of the finger loop in βarr1 is different from that adopted by the finger loop of visual arrestin when it couples to rhodopsin8. β1AR coupled to βarr1 shows considerable differences in structure compared with β1AR coupled to Nb80, including an inward movement of extracellular loop 3 and the cytoplasmic ends of H5 and H6. We observe weakened interactions between formoterol and two serine residues in H5 at the orthosteric binding site of β1AR, and find that formoterol has a lower affinity for the β1AR-βarr1 complex than for the β1AR-Gs complex. The structural differences between these complexes of β1AR provide a foundation for the design of small molecules that could bias signalling in the β-adrenoceptors.
Collapse
Affiliation(s)
- Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tony Warne
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rony Nehmé
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Creoptix AG, Wädenswil, Switzerland
| | - Shubhi Pandey
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | - Madhu Chaturvedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, BIFI-IQFR (CSIC), Zaragoza, Spain.,Laboratorio de Microscopías Avanzadas, University of Zaragoza, Zaragoza, Spain
| | | | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | |
Collapse
|
6
|
Kozielewicz P, Turku A, Bowin CF, Petersen J, Valnohova J, Cañizal MCA, Ono Y, Inoue A, Hoffmann C, Schulte G. Structural insight into small molecule action on Frizzleds. Nat Commun 2020; 11:414. [PMID: 31964872 PMCID: PMC6972889 DOI: 10.1038/s41467-019-14149-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 01/05/2023] Open
Abstract
WNT-Frizzled (FZD) signaling plays a critical role in embryonic development, stem cell regulation and tissue homeostasis. FZDs are linked to severe human pathology and are seen as a promising target for therapy. Despite intense efforts, no small molecule drugs with distinct efficacy have emerged. Here, we identify the Smoothened agonist SAG1.3 as a partial agonist of FZD6 with limited subtype selectivity. Employing extensive in silico analysis, resonance energy transfer- and luciferase-based assays we describe the mode of action of SAG1.3. We define the ability of SAG1.3 to bind to FZD6 and to induce conformational changes in the receptor, recruitment and activation of G proteins and dynamics in FZD–Dishevelled interaction. Our results provide the proof-of-principle that FZDs are targetable by small molecules acting on their seven transmembrane spanning core. Thus, we provide a starting point for a structure-guided and mechanism-based drug discovery process to exploit the potential of FZDs as therapeutic targets. WNT-Frizzled (FZD) signaling plays a critical role in embryonic development, tissue homeostasis and human disease but no small molecule drugs targeting FZD with distinct efficacy have emerged so far. Here, authors identify the Smoothened agonist SAG1.3 as a partial agonist for FZD6 with limited subtype selectivity.
Collapse
Affiliation(s)
- Paweł Kozielewicz
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, S-17165, Stockholm, Sweden
| | - Ainoleena Turku
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, S-17165, Stockholm, Sweden
| | - Carl-Fredrik Bowin
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, S-17165, Stockholm, Sweden
| | - Julian Petersen
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, S-17165, Stockholm, Sweden
| | - Jana Valnohova
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, S-17165, Stockholm, Sweden
| | - Maria Consuelo Alonso Cañizal
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Yuki Ono
- Department of Pharmacological Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Asuka Inoue
- Department of Pharmacological Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Carsten Hoffmann
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.,Institute for Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Friedrich-Schiller University Jena, Hans-Knöll-Strasse 2, 07745, Jena, Germany
| | - Gunnar Schulte
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, S-17165, Stockholm, Sweden.
| |
Collapse
|
7
|
Congreve M, Brown GA, Borodovsky A, Lamb ML. Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discov 2018; 13:997-1003. [DOI: 10.1080/17460441.2018.1534825] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Limited, Steinmetz Building, Cambridge, Granta Park, UK
| | - Giles A. Brown
- Heptares Therapeutics Limited, Steinmetz Building, Cambridge, Granta Park, UK
| | | | - Michelle L. Lamb
- Medicinal Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| |
Collapse
|
8
|
García-Nafría J, Lee Y, Bai X, Carpenter B, Tate CG. Cryo-EM structure of the adenosine A 2A receptor coupled to an engineered heterotrimeric G protein. eLife 2018; 7:35946. [PMID: 29726815 PMCID: PMC5962338 DOI: 10.7554/elife.35946] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
The adenosine A2A receptor (A2AR) is a prototypical G protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein GS. Here, we determine the structure by electron cryo-microscopy (cryo-EM) of A2AR at pH 7.5 bound to the small molecule agonist NECA and coupled to an engineered heterotrimeric G protein, which contains mini-GS, the βγ subunits and nanobody Nb35. Most regions of the complex have a resolution of ~3.8 Å or better. Comparison with the 3.4 Å resolution crystal structure shows that the receptor and mini-GS are virtually identical and that the density of the side chains and ligand are of comparable quality. However, the cryo-EM density map also indicates regions that are flexible in comparison to the crystal structures, which unexpectedly includes regions in the ligand binding pocket. In addition, an interaction between intracellular loop 1 of the receptor and the β subunit of the G protein was observed.
Collapse
Affiliation(s)
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Xiaochen Bai
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Carpenter B, Lebon G. Human Adenosine A 2A Receptor: Molecular Mechanism of Ligand Binding and Activation. Front Pharmacol 2017; 8:898. [PMID: 29311917 PMCID: PMC5736361 DOI: 10.3389/fphar.2017.00898] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022] Open
Abstract
Adenosine receptors (ARs) comprise the P1 class of purinergic receptors and belong to the largest family of integral membrane proteins in the human genome, the G protein-coupled receptors (GPCRs). ARs are classified into four subtypes, A1, A2A, A2B, and A3, which are all activated by extracellular adenosine, and play central roles in a broad range of physiological processes, including sleep regulation, angiogenesis and modulation of the immune system. ARs are potential therapeutic targets in a variety of pathophysiological conditions, including sleep disorders, cancer, and dementia, which has made them important targets for structural biology. Over a decade of research and innovation has culminated with the publication of more than 30 crystal structures of the human adenosine A2A receptor (A2AR), making it one of the best structurally characterized GPCRs at the atomic level. In this review we analyze the structural data reported for A2AR that described for the first time the binding of mode of antagonists, including newly developed drug candidates, synthetic and endogenous agonists, sodium ions and an engineered G protein. These structures have revealed the key conformational changes induced upon agonist and G protein binding that are central to signal transduction by A2AR, and have highlighted both similarities and differences in the activation mechanism of this receptor compared to other class A GPCRs. Finally, comparison of A2AR with the recently solved structures of A1R has provided the first structural insight into the molecular determinants of ligand binding specificity in different AR subtypes.
Collapse
Affiliation(s)
- Byron Carpenter
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Guillaume Lebon
- Institut de Génomique Fonctionnelle, Neuroscience Department, UMR CNRS 5203, INSERM U1191, Université de Montpellier, Montpellier, France
| |
Collapse
|
10
|
Nehmé R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, Du H, Grisshammer R, Tate CG. Mini-G proteins: Novel tools for studying GPCRs in their active conformation. PLoS One 2017; 12:e0175642. [PMID: 28426733 PMCID: PMC5398546 DOI: 10.1371/journal.pone.0175642] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/08/2023] Open
Abstract
Mini-G proteins are the engineered GTPase domains of Gα subunits. They couple to GPCRs and recapitulate the increase in agonist affinity observed upon coupling of a native heterotrimeric G protein. Given the small size and stability of mini-G proteins, and their ease of expression and purification, they are ideal for biophysical studies of GPCRs in their fully active state. The first mini-G protein developed was mini-Gs. Here we extend the family of mini-G proteins to include mini-Golf, mini-Gi1, mini-Go1 and the chimeras mini-Gs/q and mini-Gs/i. The mini-G proteins were shown to couple to relevant GPCRs and to form stable complexes with purified receptors that could be purified by size exclusion chromatography. Agonist-bound GPCRs coupled to a mini-G protein showed higher thermal stability compared to the agonist-bound receptor alone. Fusion of GFP at the N-terminus of mini-G proteins allowed receptor coupling to be monitored by fluorescence-detection size exclusion chromatography (FSEC) and, in a separate assay, the affinity of mini-G protein binding to detergent-solubilised receptors was determined. This work provides the foundation for the development of any mini-G protein and, ultimately, for the structure determination of GPCRs in a fully active state.
Collapse
Affiliation(s)
- Rony Nehmé
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Ankita Singhal
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Annette Strege
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Courtney F. White
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | - Haijuan Du
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | - Reinhard Grisshammer
- Membrane Protein Structure Function Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services, Rockville, United States of America
| | | |
Collapse
|
11
|
Carpenter B, Tate CG. Expression and Purification of Mini G Proteins from Escherichia coli. Bio Protoc 2017; 7:e2235. [PMID: 28480316 DOI: 10.21769/bioprotoc.2235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Heterotrimeric G proteins modulate intracellular signalling by transducing information from cell surface G protein-coupled receptors (GPCRs) to cytoplasmic effector proteins. Structural and functional characterisation of GPCR-G protein complexes is important to fully decipher the mechanism of signal transduction. However, native G proteins are unstable and conformationally dynamic when coupled to a receptor. We therefore developed an engineered minimal G protein, mini-Gs, which formed a stable complex with GPCRs, and facilitated the crystallisation and structure determination of the human adenosine A2A receptor (A2AR) in its active conformation. Mini G proteins are potentially useful tools in a variety of applications, including characterising GPCR pharmacology, binding affinity and kinetic experiments, agonist drug discovery, and structure determination of GPCR-G protein complexes. Here, we describe a detailed protocol for the expression and purification of mini-Gs.
Collapse
Affiliation(s)
- Byron Carpenter
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK
| |
Collapse
|