1
|
Kawakami N, Wekerle H. Life history of a brain autoreactive T cell: From thymus through intestine to blood-brain barrier and brain lesion. Neurotherapeutics 2024:e00442. [PMID: 39237437 DOI: 10.1016/j.neurot.2024.e00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Brain antigen-specific autoreactive T cells seem to play a key role in inducing inflammation in the central nervous system (CNS), a characteristic feature of human multiple sclerosis (MS). These T cells are generated within the thymus, where they escape negative selection and become integrated into the peripheral immune repertoire of immune cells. Typically, these autoreactive T cells rest in the periphery without attacking the CNS. When autoimmune T cells enter gut-associated lymphatic tissue (GALT), they may be stimulated by the microbiota and its metabolites. After activation, the cells migrate into the CNS through the blood‒brain barrier, become reactivated upon interacting with local antigen-presenting cells, and induce inflammatory lesions within the brain parenchyma. This review describes how microbiota influence autoreactive T cells during their life, starting in the thymus, migrating through the periphery and inducing inflammation in their target organ, the CNS.
Collapse
Affiliation(s)
- Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany.
| | - Hartmut Wekerle
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich and Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Germany; Emeritus Group Neuroimmunology, Max Planck Institute of Biological Intelligence, Germany.
| |
Collapse
|
2
|
Tanaka Y, Ohki I, Murakami K, Ozawa S, Wang Y, Murakami M. The gateway reflex regulates tissue-specific autoimmune diseases. Inflamm Regen 2024; 44:12. [PMID: 38449060 PMCID: PMC10919025 DOI: 10.1186/s41232-024-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
The dynamic interaction and movement of substances and cells between the central nervous system (CNS) and peripheral organs are meticulously controlled by a specialized vascular structure, the blood-brain barrier (BBB). Experimental and clinical research has shown that disruptions in the BBB are characteristic of various neuroinflammatory disorders, including multiple sclerosis. We have been elucidating a mechanism termed the "gateway reflex" that details the entry of immune cells, notably autoreactive T cells, into the CNS at the onset of such diseases. This process is initiated through local neural responses to a range of environmental stimuli, such as gravity, electricity, pain, stress, light, and joint inflammation. These stimuli specifically activate neural pathways to open gateways at targeted blood vessels for blood immune cell entry. The gateway reflex is pivotal in managing tissue-specific inflammatory diseases, and its improper activation is linked to disease progression. In this review, we present a comprehensive examination of the gateway reflex mechanism.
Collapse
Affiliation(s)
- Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Izuru Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Ozawa
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yaze Wang
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
Byun DJ, Lee J, Ko K, Hyun YM. NLRP3 exacerbates EAE severity through ROS-dependent NET formation in the mouse brain. Cell Commun Signal 2024; 22:96. [PMID: 38308301 PMCID: PMC10835891 DOI: 10.1186/s12964-023-01447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Neutrophil extracellular trap (NET) has been implicated in the pathology of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the specific contributions of NLRP3, a NET-associated molecule, to EAE pathogenesis and its regulatory role in NET formation remain unknown. METHODS To investigate the detrimental effect of NETs supported by NLRP3 in MS pathogenesis, we induced EAE in WT and NLRP3 KO mice and monitored the disease severity. At the peak of the disease, NET formation was assessed by flow cytometry, immunoblotting, and immunofluorescence staining. To further identify the propensity of infiltrated neutrophils, NET-related chemokine receptors, degranulation, ROS production, and PAD4 expression levels were evaluated by flow cytometry. In some experiments, mice were injected with DNase-1 to eliminate the formed NETs. RESULTS Our data revealed that neutrophils significantly infiltrate the brain and spinal cord and form NETs during EAE pathogenesis. NLRP3 significantly elevates NET formation, primarily in the brain. NLRP3 also modulated the phenotypes of brain-infiltrated and circulating neutrophils, augmenting CXCR2 and CXCR4 expression, thereby potentially enhancing NET formation. NLRP3 facilitates NET formation in a ROS-dependent and PAD4-independent manner in brain-infiltrated neutrophils. Finally, NLRP3-supported NET formation exacerbates disease severity, triggering Th1 and Th17 cells recruitment. CONCLUSIONS Collectively, our findings suggest that NLRP3-supported NETs may be an etiological factor in EAE pathogenesis, primarily in the brain. This study provides evidence that targeting NLRP3 could be a potential therapeutic strategy for MS, specifically by attenuating NET formation.
Collapse
Affiliation(s)
- Da Jeong Byun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Lee
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyungryung Ko
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Buttigieg E, Scheller A, El Waly B, Kirchhoff F, Debarbieux F. Contribution of Intravital Neuroimaging to Study Animal Models of Multiple Sclerosis. Neurotherapeutics 2023; 20:22-38. [PMID: 36653665 PMCID: PMC10119369 DOI: 10.1007/s13311-022-01324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a complex and long-lasting neurodegenerative disease of the central nervous system (CNS), characterized by the loss of myelin within the white matter and cortical fibers, axonopathy, and inflammatory responses leading to consequent sensory-motor and cognitive deficits of patients. While complete resolution of the disease is not yet a reality, partial tissue repair has been observed in patients which offers hope for therapeutic strategies. To address the molecular and cellular events of the pathomechanisms, a variety of animal models have been developed to investigate distinct aspects of MS disease. Recent advances of multiscale intravital imaging facilitated the direct in vivo analysis of MS in the animal models with perspective of clinical transfer to patients. This review gives an overview of MS animal models, focusing on the current imaging modalities at the microscopic and macroscopic levels and emphasizing the importance of multimodal approaches to improve our understanding of the disease and minimize the use of animals.
Collapse
Affiliation(s)
- Emeline Buttigieg
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Bilal El Waly
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Franck Debarbieux
- Institut des Neurosciences de la Timone (INT), Aix-Marseille Université, CNRS UMR7289, 13005, Marseille, France.
- Centre Européen de Recherche en Imagerie Médicale (CERIMED), Aix-Marseille Université, Marseille, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
5
|
Abstract
The systemic regulation of immune reactions by the nervous system is well studied and depends on the release of hormones. Some regional regulations of immune reactions, on the other hand, depend on specific neural pathways. Better understanding of these regulations will expand therapeutic applications for neuroimmune and organ-to-organ functional interactions. Here, we discuss one regional neuroimmune interaction, the gateway reflex, which converts specific neural inputs into local inflammatory outputs in the CNS. Neurotransmitters released by the inputs stimulate specific blood vessels to express chemokines, which serve as a gateway for immune cells to extravasate into the target organ such as the brain or spinal cord. Several types of gateway reflexes have been reported, and each controls distinct CNS blood vessels to form gateways that elicit local inflammation, particularly in the presence of autoreactive immune cells. For example, neural stimulation by gravity creates the initial entry point to the CNS by CNS-reactive pathogenic CD4+ T cells at the dorsal vessels of fifth lumbar spinal cord, while pain opens the gateway at the ventral side of blood vessels in the spinal cord. In addition, it was recently found that local inflammation by the gateway reflex in the brain triggers the activation of otherwise resting neural circuits to dysregulate organ functions in the periphery including the upper gastrointestinal tract and heart. Therefore, the gateway reflex represents a novel bidirectional neuroimmune interaction that regulates organ functions and could be a promising target for bioelectric medicine.
Collapse
Affiliation(s)
- D Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - M Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
6
|
Stofkova A, Murakami M. Neural activity regulates autoimmune diseases through the gateway reflex. Bioelectron Med 2019; 5:14. [PMID: 32232103 PMCID: PMC7098223 DOI: 10.1186/s42234-019-0030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The brain, spinal cord and retina are protected from blood-borne compounds by the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB) and blood-retina barrier (BRB) respectively, which create a physical interface that tightly controls molecular and cellular transport. The mechanical and functional integrity of these unique structures between blood vessels and nervous tissues is critical for maintaining organ homeostasis. To preserve the stability of these barriers, interplay between constituent barrier cells, such as vascular endothelial cells, pericytes, glial cells and neurons, is required. When any of these cells are defective, the barrier can fail, allowing blood-borne compounds to encroach neural tissues and cause neuropathologies. Autoimmune diseases of the central nervous system (CNS) and retina are characterized by barrier disruption and the infiltration of activated immune cells. Here we review our recent findings on the role of neural activity in the regulation of these barriers at the vascular endothelial cell level in the promotion of or protection against the development of autoimmune diseases. We suggest nervous system reflexes, which we named gateway reflexes, are fundamentally involved in these diseases. Although their reflex arcs are not completely understood, we identified the activation of specific sensory neurons or receptor cells to which barrier endothelial cells respond as effectors that regulate gateways for immune cells to enter the nervous tissue. We explain this novel mechanism and describe its role in neuroinflammatory conditions, including models of multiple sclerosis and posterior autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- 1Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| | - Masaaki Murakami
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| |
Collapse
|
7
|
Kamimura D, Ohki T, Arima Y, Murakami M. Gateway reflex: neural activation-mediated immune cell gateways in the central nervous system. Int Immunol 2018; 30:281-289. [DOI: 10.1093/intimm/dxy034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/12/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Takuto Ohki
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yasunobu Arima
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|