1
|
Mohamed DFMS, Tarafdar A, Lee SY, Oh HB, Kwon JH. Assessment of biodegradation and toxicity of alternative plasticizer di(2-ethylhexyl) terephthalate: Impacts on microbial biofilms, metabolism, and reactive oxygen species-mediated stress response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124217. [PMID: 38797346 DOI: 10.1016/j.envpol.2024.124217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.
Collapse
Affiliation(s)
- Dana Fahad M S Mohamed
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Food Science and Environmental Health, Technological University Dublin, City Campus, Grangegorman, Dublin, D07ADY7, Ireland
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
George M, Allerkamp HH, Koshenov Z, Oflaz FE, Tam-Amersdorfer C, Kolesnik T, Rittchen S, Lang M, Fröhlich E, Graier W, Strobl H, Wadsack C. Liver X receptor activation mitigates oxysterol-induced dysfunction in fetoplacental endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159466. [PMID: 38369253 DOI: 10.1016/j.bbalip.2024.159466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Maintaining the homeostasis of the placental vasculature is of paramount importance for ensuring normal fetal growth and development. Any disruption in this balance can lead to perinatal morbidity. Several studies have uncovered an association between high levels of oxidized cholesterol (oxysterols), and complications during pregnancy, including gestational diabetes mellitus (GDM) and preeclampsia (PE). These complications often coincide with disturbances in placental vascular function. Here, we investigate the role of two oxysterols (7-ketocholesterol, 7β-hydroxycholesterol) in (dys)function of primary fetoplacental endothelial cells (fpEC). Our findings reveal that oxysterols exert a disruptive influence on fpEC function by elevating the production of reactive oxygen species (ROS) and interfering with mitochondrial transmembrane potential, leading to its depolarization. Moreover, oxysterol-treated fpEC exhibited alterations in intracellular calcium (Ca2+) levels, resulting in the reorganization of cell junctions and a corresponding increase in membrane stiffness and vascular permeability. Additionally, we observed an enhanced adhesion of THP-1 monocytes to fpEC following oxysterol treatment. We explored the influence of activating the Liver X Receptor (LXR) with the synthetic agonist T0901317 (TO) on oxysterol-induced endothelial dysfunction in fpEC. Our results demonstrate that LXR activation effectively reversed oxysterol-induced ROS generation, monocyte adhesion, and cell junction permeability in fpEC. Although the effects on mitochondrial depolarization and calcium mobilization did not reach statistical significance, a strong trend towards stabilization of calcium mobilization was evident in LXR-activated cells. Taken together, our results suggest that high levels of systemic oxysterols link to placental vascular dysfunction and LXR agonists may alleviate their impact on fetoplacental vasculature.
Collapse
Affiliation(s)
- Meekha George
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Zhanat Koshenov
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Department of Biochemistry, Weill Cornell Medicine, New York, USA
| | - Furkan E Oflaz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | - Sonja Rittchen
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria; Department of Pharmacology, Medical University of Graz, Austria
| | - Magdalena Lang
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | | | - Wolfgang Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Herbert Strobl
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology, Medical University of Graz, 8010 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; BioTech-Med, 8010 Graz, Austria.
| |
Collapse
|
3
|
Sunnerberg J, Thomas WS, Petusseau A, Reed MS, Jack Hoopes P, Pogue BW. Review of optical reporters of radiation effects in vivo: tools to quantify improvements in radiation delivery technique. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:080901. [PMID: 37560327 PMCID: PMC10409499 DOI: 10.1117/1.jbo.28.8.080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Significance Radiation damage studies are used to optimize radiotherapy treatment techniques. Although biological indicators of damage are the best assays of effect, they are highly variable due to biological heterogeneity. The free radical radiochemistry can be assayed with optical reporters, allowing for high precision titration of techniques. Aim We examine the optical reporters of radiochemistry to highlight those with the best potential for translational use in vivo, as surrogates for biological damage assays, to inform on mechanisms. Approach A survey of the radical chemistry effects from reactive oxygen species (ROS) and oxygen itself was completed to link to DNA or biological damage. Optical reporters of ROS include fluorescent, phosphorescent, and bioluminescent molecules that have a variety of activation pathways, and each was reviewed for its in vivo translation potential. Results There are molecular reporters of ROS having potential to report within living systems, including derivatives of luminol, 2'7'-dichlorofluorescein diacetate, Amplex Red, and fluorescein. None have unique specificity to singular ROS species. Macromolecular engineered reporters unique to specific ROS are emerging. The ability to directly measure oxygen via reporters, such as Oxyphor and protoporphyrin IX, is an opportunity to quantify the consumption of oxygen during ROS generation, and this translates from in vitro to in vivo use. Emerging techniques, such as ion particle beams, spatial fractionation, and ultra-high dose rate FLASH radiotherapy, provide the motivation for these studies. Conclusions In vivo optical reporters of radiochemistry are quantitatively useful for comparing radiotherapy techniques, although their use comes at the cost of the unknown connection to the mechanisms of radiobiological damage. Still their lower measurement uncertainty, compared with biological response assay, makes them an invaluable tool. Linkage to DNA damage and biological damage is needed, and measures such as oxygen consumption serve as useful surrogate measures that translate to in vivo use.
Collapse
Affiliation(s)
- Jacob Sunnerberg
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - William S. Thomas
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Arthur Petusseau
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Matthew S. Reed
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - P. Jack Hoopes
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| |
Collapse
|
4
|
Liu W, Xu Y, Slaveykova VI. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160516. [PMID: 36470380 DOI: 10.1016/j.scitotenv.2022.160516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Limited information exists on how bacterial resistance to antibiotics is acquired and altered in response to short-term metal stress, and what the prevailing pathways are. Here the precursor mechanisms of development of bacterial antibiotic resistance mediated by oxidative stress induce under sub-lethal Cu2+ exposure were explored. The results showed that the overall level of antibiotic resistance in wild-type Escherichia coli and antibiotic-resistant E. coli was enhanced under 4 and 20 mg/L Cu2+ exposure, as demonstrated by the 2- to 8-fold increase in minimum inhibitory concentration (MIC). The MIC correlated with the increase of the cellular ROS generation and the enhancement of the antioxidant enzyme activity (p < 0.05), suggesting that changes in antibiotic resistance under sub-lethal Cu2+ exposure could be associated with oxidative stress. Likewise, enhanced cell membrane permeability and an increase in the number of bacteria entering the viable but non culturable (VBNC) state contributed to bacterial resistance to antibiotics. Moreover, the variance partitioning analysis demonstrated that the alterations of the antibiotic resistance phenotype of wild-type E. coli was mainly caused by oxidative stress-mediated increase in cell membrane permeability and entry into the VBNC state. The development of antibiotic resistance in resistant E. coli was primarily attributed to changes in the abundance and horizontal transfer ability of its antibiotic resistance genes, both of which contributed up to 20 %. Taken together the results allowed to propose a conseptual scheme on developing bacterial antibiotic resistance mediated by oxidative stress under sub-lethal Cu2+ exposure. This result provided a strong basis for reduction of early bacterial resistance.
Collapse
Affiliation(s)
- Wei Liu
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Fukang Road 31, Tianjin, China.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.A. Forel for Environmental and Aquatic Sciences, Faculty of Sciences, University of Geneva, Bvd. Carl-Vogt 66, 1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Kamikubo Y, Yamana T, Inoue Y, Sakurai T. Multifaceted analysis of nanotoxicity using primary cultured neurons. NANO EXPRESS 2022. [DOI: 10.1088/2632-959x/ac7cfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Various nanomaterials have been produced with the development of nanotechnology, some of which have been reported to have adverse effects on several types of cells, organs, and the environment. It has been suggested that some small nanoparticles can cross the blood-brain barrier and accumulate in the brain, which may be a potential cause of brain diseases. Neuronal cells are vulnerable to hypoxia, hypotrophy, and mechanical and oxidative stress. Therefore, it is essential to assess the toxicity of nanoparticles to neurons accurately. In this report, we describe a primary culture protocol to evaluate the toxicity of nanoparticles on neurons, a potential high-throughput method for assessing the cytotoxicity, and a method for evaluating the effect on neuronal maturation. This report assessed the toxicity of silicon dioxide, zinc oxide, and iron nanoparticles using rat hippocampal neurons, which are used frequently in pharmacological and physiological studies. Based on the methods and protocols we reported in this report, it may be possible to evaluate nanotoxicity to various neurons by using primary cultures of other brain regions (cerebral cortex, cerebellum, thalamus, etc.), spinal cord, and peripheral nerves.
Collapse
|
6
|
Gao J, Wang F, Jiang W, Miao J, Wang P, Zhou Z, Liu D. A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114808. [PMID: 32434115 DOI: 10.1016/j.envpol.2020.114808] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 05/27/2023]
Abstract
Pesticides applied to paddy fields may pose considerable danger to non-target aquatic organisms and further threaten human health. Flufiprole is a pesticide used in rice fields; considering the widespread existence of rice-fish-farming ecosystems, the acute toxicities of flufiprole enantiomers and its six metabolites (fipronil, flufiprole sulfide, flufiprole sulfone, detrifluoromethylsulfinyl flufiprole, desulfinyl flufiprole, and flufiprole amide) to four common aquatic organisms in rice fields including Misgurnus anguillicaudatus (pond loach), Carassius gibelio (Prussian carp), Pelophylax nigromaculatus (black-spotted frog), and Daphnia magna (water flea) were investigated. Genotoxicity, pathological changes and the effects on the antioxidant system of M. anguillicaudatus were also evaluated after exposure. The LC50 (EC50) values showed that fipronil and desulfinyl flufiprole were the most toxic compounds and were approximately about six times as toxic as flufiprole. No enantioselective toxicity was observed between the two enantiomers. The activity of antioxidant defense enzymes and the content of malondialdehyde (MDA) in the liver and gills of M. anguillicaudatus were significantly increased by the chemicals in most cases. In addition, fipronil and desulfinyl flufiprole were found to induce an increase in the micronucleus rate in M. anguillicaudatus. Histopathological analysis showed that the liver of M. anguillicaudatus was not significantly affected by flufiprole. Our study demonstrated a potential negative effect on flufiprole-treated aquatic organisms. As an alternative to fipronil, the environmental risk of flufiprole and its metabolites to non-target organisms in rice fields cannot be ignored.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Fang Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Jingwen Miao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing, 100193, PR China.
| |
Collapse
|