1
|
Ge P, Lu H, Wang W, Ma Y, Li Y, Zhou T, Wei T, Wu J, Cui F. Plasmodesmata-associated Flotillin positively regulates broad-spectrum virus cell-to-cell trafficking. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1387-1401. [PMID: 38130080 PMCID: PMC11022789 DOI: 10.1111/pbi.14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Viral diseases seriously threaten rice production. Plasmodesmata (PD)-associated proteins are deemed to play a key role in viral infection in host plants. However, few PD-associated proteins have been discovered in rice to afford viral infection. Here, inspired by the infection mechanism in insect vectors, we identified a member of the Flotillin family taking part in the cell-to-cell transport of rice stripe virus (RSV) in rice. Flotillin1 interacted with RSV nucleocapsid protein (NP) and was localized on PD. In flotillin1 knockout mutant rice, which displayed normal growth, RSV intercellular movement was retarded, leading to significantly decreased disease incidence. The PD pore sizes of the mutant rice were smaller than those of the wild type due to more callose deposits, which was closely related to the upregulation of two callose synthase genes. RSV infection stimulated flotillin1 expression and enlarged the PD aperture via RSV NP. In addition, flotillin1 knockout decreased disease incidences of southern rice black-streaked dwarf virus (SRBSDV) and rice dwarf virus (RDV) in rice. Overall, our study reveals a new PD-associated protein facilitating virus cell-to-cell trafficking and presents the potential of flotillin1 as a target to produce broad-spectrum antiviral rice resources in the future.
Collapse
Affiliation(s)
- Panpan Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Yonghuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life SciencesPeking UniversityBeijingChina
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector‐borne Virus Research Center, Institute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianguo Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Vector‐borne Virus Research Center, Institute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Feng Cui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Asadi M, Millar AA. Review: Plant microRNAs in pathogen defense: A panacea or a piece of the puzzle? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111993. [PMID: 38266718 DOI: 10.1016/j.plantsci.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Plant microRNAs (miRNAs) control key agronomic traits that are associated with their conserved role(s) in development. However, despite a multitude of studies, the utility of miRNAs in plant-pathogen resistance remains less certain. Reviewing the literature identifies three general classes of miRNAs regarding plant pathogen defense. Firstly, a number of evolutionary dynamic 22 nucleotide miRNA families that repress large numbers of plant immunity genes, either directly, or through triggering the biogenesis of secondary siRNAs. However, understanding of their role in defense and of their manipulation to enhance pathogen resistance are still lacking. Secondly, highly conserved miRNAs that indirectly impact disease resistance through their targets that are primarily regulating development or hormone signaling. Any alteration of these miRNAs usually results in pleiotropic impacts, which may alter disease resistance in some plant species, and against some pathogens. Thirdly, are the comparatively diverse and evolutionary dynamic set of non-conserved miRNAs, some of which contribute to pathogen resistance, but whose narrow evolutionary presence will likely restrict their utility. Therefore, reflecting the diverse and evolving nature of plant-pathogen interactions, a complex interplay of plant miRNAs with pathogen responses exists. Any miRNA-based solution for pathogen resistance will likely be highly specific, rather than a general panacea.
Collapse
Affiliation(s)
- Mohsen Asadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Department of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australia; ARC Training Centre for Accelerated Future Crop development, ANU, Canberra, Australia.
| |
Collapse
|
3
|
Lin S, Li XW, Liu JL, Ou-Yang YY, Zhang B, Zhao SJ, Chai XQ, Ma YL, Liu J. The immune response mechanism of Nilaparvata lugens against a combined infection of rice ragged stunt virus and Metarhizium anisopliae. PEST MANAGEMENT SCIENCE 2024; 80:1193-1205. [PMID: 37888855 DOI: 10.1002/ps.7849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Wen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian-Li Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yu-Ying Ou-Yang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Shu-Jiao Zhao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xue-Qing Chai
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yong-le Ma
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jian Liu
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Orange, Australia
| |
Collapse
|
4
|
Li X, Zhang B, Zou J, Li Q, Liu J, Cai S, Akutse KS, You M, Lin S. Immune Responses and Transcriptomic Analysis of Nilaparvata lugens against Metarhizium anisopliae YTTR Mediated by Rice Ragged Stunt Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:345. [PMID: 36679058 PMCID: PMC9865581 DOI: 10.3390/plants12020345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Plant viruses and entomopathogenic fungi (EPF) can both elicit immune responses in insects. This study was designed to clarify whether plant viruses could affect the efficacy of EPF and explore the immune responses of brown planthopper (BPH), Nilaparvata lugens, in response to different pathogen infections. In this study, a strain of Metarhizium anisopliae YTTR with high pathogenicity against BPH was selected and explored whether rice ragged stunt virus (RRSV) could affect its lethality against BPH. RNA-seq was used to detect the inner responses of BPH in response to RRSV and M. anisopliae YTTR infection. Results showed that M. anisopliae YTTR has strong lethality against BPH (RRSV-carrying and RRSV-free). RRSV invasion did not affect the susceptibility of BPH against M. anisopliae YTTR at all concentrations. At 1 × 108 spores/mL, M. anisopliae YTTR caused a cumulative mortality of 80% to BPH at 7 days post-treatment. The largest numbers of differentially expressed genes (DEGs) was obtained in BPH treated with the two pathogens than in other single pathogen treatment. In addition, KEGG enrichment analysis showed that the DEGs were mostly enriched in immune and physiological mechanisms-related pathways. Both RRSV and M. anisopliae YTTR could induce the expression changes of immune-related genes. However, most of the immune genes had varying expression patterns in different treatment. Our findings demonstrated that RRSV invasion did not have any significant effect on the pathogenicity of M. anisopliae YTTR, while the co-infection of M. anisopliae YTTR and RRSV induced more immune and physiological mechanisms -related genes' responses. In addition, the presence of RRSV could render the interplay between BPH and M. anisopliae YTTR more intricate. These findings laid a basis for further elucidating the immune response mechanisms of RRSV-mediated BPH to M. anisopliae infection.
Collapse
Affiliation(s)
- Xuewen Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Bang Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jiaxing Zou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Qianqian Li
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jianli Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Shouping Cai
- Fujian Key Laboratory of Forest Cultivation and Forest Products Processing and Utilization, Fujian Academy of Forestry, Fuzhou 350002, China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Sheng Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| |
Collapse
|