1
|
Harshkova D, Zielińska E, Narajczyk M, Kapusta M, Aksmann A. Mitochondria dysfunction is one of the causes of diclofenac toxicity in the green alga Chlamydomonas reinhardtii. PeerJ 2024; 12:e18005. [PMID: 39221263 PMCID: PMC11365475 DOI: 10.7717/peerj.18005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Non-steroidal anti-inflammatory drugs (NSAIDs), such as diclofenac (DCF), form a significant group of environmental contaminants. When the toxic effects of DCF on plants are analyzed, authors often focus on photosynthesis, while mitochondrial respiration is usually overlooked. Therefore, an in vivo investigation of plant mitochondria functioning under DCF treatment is needed. In the present work, we decided to use the green alga Chlamydomonas reinhardtii as a model organism. Methods Synchronous cultures of Chlamydomonas reinhardtii strain CC-1690 were treated with DCF at a concentration of 135.5 mg × L-1, corresponding to the toxicological value EC50/24. To assess the effects of short-term exposure to DCF on mitochondrial activity, oxygen consumption rate, mitochondrial membrane potential (MMP) and mitochondrial reactive oxygen species (mtROS) production were analyzed. To inhibit cytochrome c oxidase or alternative oxidase activity, potassium cyanide (KCN) or salicylhydroxamic acid (SHAM) were used, respectively. Moreover, the cell's structure organization was analyzed using confocal microscopy and transmission electron microscopy. Results The results indicate that short-term exposure to DCF leads to an increase in oxygen consumption rate, accompanied by low MMP and reduced mtROS production by the cells in the treated populations as compared to control ones. These observations suggest an uncoupling of oxidative phosphorylation due to the disruption of mitochondrial membranes, which is consistent with the malformations in mitochondrial structures observed in electron micrographs, such as elongation, irregular forms, and degraded cristae, potentially indicating mitochondrial swelling or hyper-fission. The assumption about non-specific DCF action is further supported by comparing mitochondrial parameters in DCF-treated cells to the same parameters in cells treated with selective respiratory inhibitors: no similarities were found between the experimental variants. Conclusions The results obtained in this work suggest that DCF strongly affects cells that experience mild metabolic or developmental disorders, not revealed under control conditions, while more vital cells are affected only slightly, as it was already indicated in literature. In the cells suffering from DCF treatment, the drug influence on mitochondria functioning in a non-specific way, destroying the structure of mitochondrial membranes. This primary effect probably led to the mitochondrial inner membrane permeability transition and the uncoupling of oxidative phosphorylation. It can be assumed that mitochondrial dysfunction is an important factor in DCF phytotoxicity. Because studies of the effects of NSAIDs on the functioning of plant mitochondria are relatively scarce, the present work is an important contribution to the elucidation of the mechanism of NSAID toxicity toward non-target plant organisms.
Collapse
Affiliation(s)
- Darya Harshkova
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Elżbieta Zielińska
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Magdalena Narajczyk
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
2
|
Dougherty LL, Dutta S, Avasthi P. The ERK activator, BCI, inhibits ciliogenesis and causes defects in motor behavior, ciliary gating, and cytoskeletal rearrangement. Life Sci Alliance 2023; 6:e202301899. [PMID: 36914265 PMCID: PMC10011610 DOI: 10.26508/lsa.202301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
MAPK pathways are well-known regulators of the cell cycle, but they have also been found to control ciliary length in a wide variety of organisms and cell types from Caenorhabditis elegans neurons to mammalian photoreceptors through unknown mechanisms. ERK1/2 is a MAP kinase in human cells that is predominantly phosphorylated by MEK1/2 and dephosphorylated by the phosphatase DUSP6. We have found that the ERK1/2 activator/DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), inhibits ciliary maintenance in Chlamydomonas and hTERT-RPE1 cells and assembly in Chlamydomonas These effects involve inhibition of total protein synthesis, microtubule organization, membrane trafficking, and KAP-GFP motor dynamics. Our data provide evidence for various avenues for BCI-induced ciliary shortening and impaired ciliogenesis that gives mechanistic insight into how MAP kinases can regulate ciliary length.
Collapse
Affiliation(s)
- Larissa L Dougherty
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| | - Soumita Dutta
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Bigge BM, Dougherty LL, Avasthi P. Lithium-induced ciliary lengthening sparks Arp2/3 complex-dependent endocytosis. Mol Biol Cell 2023; 34:ar26. [PMID: 36753380 PMCID: PMC10092651 DOI: 10.1091/mbc.e22-06-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Ciliary length is highly regulated, but can be disrupted by lithium, which causes ciliary elongation across cell types and organisms. We used the algal system Chlamydomonas reinhardtii to investigate the mechanism behind lithium-induced ciliary elongation. Protein synthesis is not required for lengthening, and the target of lithium, GSK3, has substrates that can influence membrane dynamics. Further, ciliary assembly requires a supply of ciliary membrane as well as protein. Lithium-treated cilia elongate normally with brefeldin treatment, but dynasore treatment produced defective lengthening suggesting a source of membrane from the cell surface rather than the Golgi. Genetic or chemical perturbation of the Arp2/3 complex or dynamin, required for endocytosis, blocks lithium-induced ciliary lengthening. Finally, we found an increase in Arp2/3 complex- and endocytosis-dependent actin filaments near the ciliary base upon lithium treatment. Our results identify a mechanism for lithium-mediated cilium lengthening and demonstrate the endocytic pathway for cilium membrane supply in algae is likely a conserved mechanism given lithium's conserved effects across organisms.
Collapse
Affiliation(s)
- Brae M Bigge
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Larissa L Dougherty
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Prachee Avasthi
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
4
|
Zhou S, Li X, Lüli Y, Li X, Chen ZH, Yuan P, Yang ZL, Li G, Luo H. Novel Cyclic Peptides from Lethal Amanita Mushrooms through a Genome-Guided Approach. J Fungi (Basel) 2021; 7:204. [PMID: 33799506 PMCID: PMC7998459 DOI: 10.3390/jof7030204] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Most species in the genus Amanita are ectomycorrhizal fungi comprising both edible and poisonous mushrooms. Some species produce potent cyclic peptide toxins, such as α-amanitin, which places them among the deadliest organisms known to mankind. These toxins and related cyclic peptides are encoded by genes of the "MSDIN" family (named after the first five amino acid residues of the precursor peptides), and it is largely unknown to what extent these genes are expressed in the basidiocarps. In the present study, Amanita rimosa and Amanita exitialis were sequenced through the PacBio and Illumina techniques. Together with our two previously sequenced genomes, Amanita subjunquillea and Amanita pallidorosea, in total, 46 previously unknown MSDIN genes were discovered. The expression of over 80% of the MSDIN genes was demonstrated in A. subjunquillea. Through a combination of genomics and mass spectrometry, 12 MSDIN genes were shown to produce novel cyclic peptides. To further confirm the results, three of the cyclic peptides were chemically synthesized. The tandem mass spectrometry (MS/MS) spectra of the natural and the synthetic peptides shared a majority of the fragment ions, demonstrating an identical structure between each peptide pair. Collectively, the results suggested that the genome-guided approach is reliable for identifying novel cyclic peptides in Amanita species and that there is a large peptide reservoir in these mushrooms.
Collapse
Affiliation(s)
- Shengwen Zhou
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincan Li
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunjiao Lüli
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- Department of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650091, Yunnan, China;
| | - Zuo H. Chen
- College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China;
| | - Pengcheng Yuan
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhu L. Yang
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Guohong Li
- School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China;
| | - Hong Luo
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China; (S.Z.); (X.L.); (Y.L.); (P.Y.); (Z.L.Y.)
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
5
|
The Anti-Cancer Effect of Linusorb B3 from Flaxseed Oil through the Promotion of Apoptosis, Inhibition of Actin Polymerization, and Suppression of Src Activity in Glioblastoma Cells. Molecules 2020; 25:molecules25245881. [PMID: 33322712 PMCID: PMC7764463 DOI: 10.3390/molecules25245881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Linusorbs (LOs) are natural peptides found in flaxseed oil that exert various biological activities. Of LOs, LOB3 ([1–9-NαC]-linusorb B3) was reported to have antioxidative and anti-inflammatory activities; however, its anti-cancer activity has been poorly understood. Therefore, this study investigated the anti-cancer effect of LOB3 and its underlying mechanism in glioblastoma cells. LOB3 induced apoptosis and suppressed the proliferation of C6 cells by inhibiting the expression of anti-apoptotic genes, B cell lymphoma 2 (Bcl-2) and p53, as well as promoting the activation of pro-apoptotic caspases, caspase-3 and -9. LOB3 also retarded the migration of C6 cells, which was achieved by suppressing the formation of the actin cytoskeleton critical for the progression, invasion, and metastasis of cancer. Moreover, LOB3 inhibited the activation of the proto-oncogene, Src, and the downstream effector, signal transducer and activator of transcription 3 (STAT3), in C6 cells. Taken together, these results suggest that LOB3 plays an anti-cancer role by inducing apoptosis and inhibiting the migration of C6 cells through the regulation of apoptosis-related molecules, actin polymerization, and proto-oncogenes.
Collapse
|
6
|
Christensen JR, Craig EW, Glista MJ, Mueller DM, Li Y, Sees JA, Huang S, Suarez C, Mets LJ, Kovar DR, Avasthi P. Chlamydomonas reinhardtii formin FOR1 and profilin PRF1 are optimized for acute rapid actin filament assembly. Mol Biol Cell 2019; 30:3123-3135. [PMID: 31664873 PMCID: PMC6938247 DOI: 10.1091/mbc.e19-08-0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
The regulated assembly of multiple filamentous actin (F-actin) networks from an actin monomer pool is important for a variety of cellular processes. Chlamydomonas reinhardtii is a unicellular green alga expressing a conventional and divergent actin that is an emerging system for investigating the complex regulation of actin polymerization. One actin network that contains exclusively conventional F-actin in Chlamydomonas is the fertilization tubule, a mating structure at the apical cell surface in gametes. In addition to two actin genes, Chlamydomonas expresses a profilin (PRF1) and four formin genes (FOR1-4), one of which (FOR1) we have characterized for the first time. We found that unlike typical profilins, PRF1 prevents unwanted actin assembly by strongly inhibiting both F-actin nucleation and barbed-end elongation at equimolar concentrations to actin. However, FOR1 stimulates the assembly of rapidly elongating actin filaments from PRF1-bound actin. Furthermore, for1 and prf1-1 mutants, as well as the small molecule formin inhibitor SMIFH2, prevent fertilization tubule formation in gametes, suggesting that polymerization of F-actin for fertilization tubule formation is a primary function of FOR1. Together, these findings indicate that FOR1 and PRF1 cooperate to selectively and rapidly assemble F-actin at the right time and place.
Collapse
Affiliation(s)
- Jenna R. Christensen
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Evan W. Craig
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
| | - Michael J. Glista
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - David M. Mueller
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
| | - Yujie Li
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Jennifer A. Sees
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Shengping Huang
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66103
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Laurens J. Mets
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Prachee Avasthi
- Department of Anatomy and Cell Biology , University of Kansas Medical Center, Kansas City, KS 66103
- Department of Ophthalmology, University of Kansas Medical Center, Kansas City, KS 66103
| |
Collapse
|