1
|
Huynh DT, Nolfi E, Medfai L, van Ulsen P, Jong WSP, Sijts AJAM, Luirink J. Intranasal delivery of Salmonella OMVs decorated with Chlamydia trachomatis antigens induces specific local and systemic immune responses. Hum Vaccin Immunother 2024; 20:2330768. [PMID: 38517203 PMCID: PMC10962599 DOI: 10.1080/21645515.2024.2330768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.
Collapse
Affiliation(s)
- Dung T. Huynh
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emanuele Nolfi
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Lobna Medfai
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter van Ulsen
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Alice J. A. M. Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joen Luirink
- R&D department, Abera Bioscience AB, Uppsala, Sweden
- Group of Molecular Microbiology, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Challagundla N, Shah D, Dalai SK, Agrawal-Rajput R. IFNγ insufficiency during mouse intra-vaginal Chlamydia trachomatis infection exacerbates alternative activation in macrophages with compromised CD40 functions. Int Immunopharmacol 2024; 131:111821. [PMID: 38484664 DOI: 10.1016/j.intimp.2024.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Chlamydia trachomatis (C.tr), an obligate intracellular pathogen, causes asymptomatic genital infections in women and is a leading cause of preventable blindness. We have developed in vivo mouse models of acute and chronic C. trachomatis genital infection to explore the significance of macrophage-directed response in mediating immune activation/suppression. Our findings reveal that during chronic and repeated C. trachomatis infections, Th1 response is abated while Treg response is enhanced. Additionally, an increase in exhaustion (PD1, CTLA4) and anergic (Klrg3, Tim3) T cell markers is observed during chronic infection. We have also observed that M2 macrophages with low CD40 expression promote Th2 and Treg differentiation leading to sustained C. trachomatis genital infection. Macrophages infected with C. trachomatis or treated with supernatant of infected epithelial cells drive them to an M2 phenotype. C. trachomatis infection prevents the increase in CD40 expression as observed in western blots and flow cytometric analysis. Insufficient IFNγ, as observed during chronic infection, leads to incomplete clearance of bacteria and poor immune activation. C. trachomatis decapacitates IFNγ responsiveness in macrophages via hampering IFNγRI and IFNγRII expression which can be correlated with poor expression of MHC-II, CD40, iNOS and NO release even following IFNγ supplementation. M2 macrophages during C. trachomatis infection express low CD40 rendering immunosuppressive, Th2 and Treg differentiation which could not be reverted even by IFNγ supplementation. The alternative macrophages also harbour high bacterial load and are poor responders to IFNγ, thus promoting immunosuppression. In summary, C. trachomatis modulates the innate immune cells, attenuating the anti-chlamydial functions of T cells in a manner that involves decreased CD40 expression on macrophages.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| | - Dhruvi Shah
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| | - Sarat K Dalai
- Institute of Science, Nirma University, S.G. Highway, Ahmedabad, Gujarat, India.
| | - Reena Agrawal-Rajput
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
3
|
Poston TB. Advances in vaccine development for Chlamydia trachomatis. Pathog Dis 2024; 82:ftae017. [PMID: 39043447 PMCID: PMC11338180 DOI: 10.1093/femspd/ftae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 07/25/2024] Open
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection globally. Antibiotic treatment is highly effective, but infection is often asymptomatic resulting in most individuals going undetected and untreated. This untreated infection can ascend to the upper female genital tract to cause pelvic inflammatory disease, tubal factor infertility, and ectopic pregnancy. Chlamydia screening and treatment programs have failed to control this epidemic and demonstrate the need for an efficacious vaccine to prevent transmission and disease. Animal models and human epidemiological data reveal that natural immunity can provide partial or short-lived sterilizing immunity. These data further demonstrate the importance of eliciting interferon gamma (IFNγ)-producing cluster of differentiation 4 (CD4) T cells (Th1 and Th1/17 cells) that can likely synergize with antibody-mediated opsonophagocytosis to provide optimal protection. These studies have guided preclinical rational vaccine design for decades and the first Phase 1 clinical trials have recently been completed. Recent advances have led to improvements in vaccine platforms and clinically safe adjuvants that help provide a path forward. This review describes vaccine models, correlates of immunity, antigen and adjuvant selection, and future clinical testing for Chlamydia vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Caven L, Carabeo R. Chlamydial YAP activation in host endocervical epithelial cells mediates pro-fibrotic paracrine stimulation of fibroblasts. mSystems 2023; 8:e0090423. [PMID: 37874141 PMCID: PMC10734534 DOI: 10.1128/msystems.00904-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Chronic or repeated infection of the female upper genital tract by C. trachomatis can lead to severe fibrotic sequelae, including tubal factor infertility and ectopic pregnancy. However, the molecular mechanisms underlying this effect are unclear. In this report, we define a transcriptional program specific to C. trachomatis infection of the upper genital tract, identifying tissue-specific induction of host YAP-a pro-fibrotic transcriptional cofactor-as a potential driver of infection-mediated fibrotic gene expression. Furthermore, we show that infected endocervical epithelial cells stimulate collagen production by fibroblasts and implicate chlamydial induction of YAP in this effect. Our results define a mechanism by which infection mediates tissue-level fibrotic pathology via paracrine signaling and identify YAP as a potential therapeutic target for the prevention of Chlamydia-associated scarring of the female genital tract.
Collapse
Affiliation(s)
- Liam Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Rey Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Richardson S, Bell CR, Medhavi F, Tanner T, Lundy S, Omosun Y, Igietseme JU, Eko FO. A novel cold-chain free VCG-based subunit vaccine protects against Chlamydia abortus-induced neonatal mortality in a pregnant mouse model. Front Immunol 2023; 14:1243743. [PMID: 37915580 PMCID: PMC10616880 DOI: 10.3389/fimmu.2023.1243743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
Chlamydia abortus (Cab) causes spontaneous abortion and neonatal mortality in infected ruminants and pregnant women. Most Cab infections are asymptomatic, although they can be treated with antibiotics, signifying that control of these infections may require alternative strategies, including the use of effective vaccines. However, the limitations imposed by live attenuated and inactivated vaccines further suggest that employment of subunit vaccines may need to be considered. The efficacy of a newly generated Vibrio cholerae ghost (rVCG)-based subunit vaccine harboring the N-terminal portion of the Cab Pmp18D protein (rVCG-Pmp18.3) in preventing Cab-induced abortion or neonatal mortality was evaluated in pregnant mice. Mice were intranasally (IN) immunized and boosted twice, 2 weeks apart with the vaccine, and immunized and unimmunized mice were caged with males 4 weeks postimmunization. The mice were then infected either IN or transcervically (TC) 10 days after pregnancy, and the fertility rate was determined 7 days postpartum. Eight days after delivery, the mice were sacrificed, and Cab infectivity in the lungs and spleens was evaluated by culturing tissue homogenates in tissue culture. Our results demonstrated that the vaccine induced immune effectors that mediated complete clearance of infection in the lungs and significantly reduced Cab infectivity in the spleen following IN immunization. Vaccine immunization also afforded protection against Cab-induced upper genital tract pathology (uterine dilation). Furthermore, while there was no incidence of abortion in both immunized and unimmunized mice, immunized mice were completely protected against neonatal mortality compared to unimmunized infected controls, which lost a significant percentage of their litter 7 days postpartum. Our results establish the capability of the rVCG-Pmp18.3 vaccine to prevent infection in the lungs (mucosal) and spleen (systemic) and protect mice from Cab-induced tubal pathologies and neonatal mortality, a hallmark of Cab infection in ruminants. To advance the commercial potential of this vaccine, future studies will optimize the antigen dose and the number of vaccine doses required for protection of ruminants.
Collapse
Affiliation(s)
- Shakyra Richardson
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Courtnee R. Bell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Fnu Medhavi
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Tayhlor Tanner
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Stephanie Lundy
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yusuf Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Joseph U. Igietseme
- National Center for Emerging Zoonotic and Infectious Diseases, Center for Disease Control and Prevention (CDC), Atlanta, GA, United States
| | - Francis O. Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
6
|
Chavda VP, Pandya A, Kypreos E, Patravale V, Apostolopoulos V. Chlamydia trachomatis: quest for an eye-opening vaccine breakthrough. Expert Rev Vaccines 2022; 21:771-781. [PMID: 35470769 DOI: 10.1080/14760584.2022.2061461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Chlamydia trachomatis, commonly referred to as chlamydia (a bacterium), is a common sexually transmitted infection, and if attended to early, it can be treatable. However, if left untreated it can lead to serious consequences. C. trachomatis infects both females and males although its occurrence in females is more common, and it can spread to the eyes causing disease and in some case blindness. AREA COVERED With ongoing attempts in the most impoverished regions of the country, trachoma will be eradicated as a blinding disease by the year 2022. A prophylactic vaccine candidate with established safety and efficacy is a cogent tool to achieve this goal. This manuscript covers the vaccine development programs for chlamydial infection. EXPERT OPINION Currently, the Surgery Antibiotics Facial Environmental (SAFE) program is being implemented in endemic countries in order to reduce transmission and control of the disease. Vaccines have been shown over the years to protect against infectious diseases. Charge variant-based adjuvant can also be used for the successful delivery of chlamydial specific antigen for efficient vaccine delivery through nano delivery platform. Thus, a vaccine against C. trachomatis would be of great public health benefit.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Erica Kypreos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai India
| | - Vasso Apostolopoulos
- Department of Immunology, Institute for Health and Sport, Victoria University, Melbourne VIC Australia
| |
Collapse
|