1
|
Wang X, Rusinova R, Gregorio GG, Boudker O. FREE FATTY ACIDS INHIBIT AN ION-COUPLED MEMBRANE TRANSPORTER BY DISSIPATING THE ION GRADIENT. J Biol Chem 2024:107955. [PMID: 39491650 DOI: 10.1016/j.jbc.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Glutamate is the main excitatory transmitter in the mammalian central nervous system; glutamate transporters keep the synaptic glutamate concentrations at bay for normal brain function. Arachidonic acid (AA), docosahexaenoic acid (DHA), and other unsaturated fatty acids modulate glutamate transporters in cell- and tissue slices-based studies. Here, we investigated their effect and mechanism using a purified archaeal glutamate transporter homolog reconstituted into the lipid membranes. AA, DHA, and related fatty acids irreversibly inhibited the sodium-dependent concentrative substrate uptake into lipid vesicles within the physiologically relevant concentration range. In contrast, AA did not inhibit amino acid exchange across the membrane. The length and unsaturation of the aliphatic tail affect inhibition, and the free carboxylic headgroup is necessary. The inhibition potency did not correlate with the fatty acid effects on the bilayer deformation energies. AA does not affect the conformational dynamics of the protein, suggesting it does not inhibit structural transitions necessary for transport. Single-transporter and membrane voltage assays showed that AA and related fatty acids mediate cation leak, dissipating the driving sodium gradient. Thus, such fatty acids can act as cation ionophores, suggesting a general modulatory mechanism of membrane channels and ion-coupled transporters.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Dept. of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA.
| | - Radda Rusinova
- Dept. of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - G Glenn Gregorio
- Dept. of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA
| | - Olga Boudker
- Dept. of Physiology & Biophysics, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA; Howard Hughes Medical Institute, Weill Cornell Medicine, 1300 York Ave, New York, NY 10021, USA.
| |
Collapse
|
2
|
Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R, Ciftci HD, Falzone ME, Huysmans G, Robertson JL, Boudker O, Accardi A. Structural basis of pH-dependent activation in a CLC transporter. Nat Struct Mol Biol 2024; 31:644-656. [PMID: 38279055 PMCID: PMC11262703 DOI: 10.1038/s41594-023-01210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
CLCs are dimeric chloride channels and anion/proton exchangers that regulate processes such as muscle contraction and endo-lysosome acidification. Common gating controls their activity; its closure simultaneously silences both protomers, and its opening allows them to independently transport ions. Mutations affecting common gating in human CLCs cause dominant genetic disorders. The structural rearrangements underlying common gating are unknown. Here, using single-particle cryo-electron microscopy, we show that the prototypical Escherichia coli CLC-ec1 undergoes large-scale rearrangements in activating conditions. The slow, pH-dependent remodeling of the dimer interface leads to the concerted opening of the intracellular H+ pathways and is required for transport. The more frequent formation of short water wires in the open H+ pathway enables Cl- pore openings. Mutations at disease-causing sites favor CLC-ec1 activation and accelerate common gate opening in the human CLC-7 exchanger. We suggest that the pH activation mechanism of CLC-ec1 is related to the common gating of CLC-7.
Collapse
Affiliation(s)
- Eva Fortea
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Sangyun Lee
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
| | - Rahul Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiorgos Argyros
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Priyanka Sandal
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - Robyn Mahoney-Kruszka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hatice Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Tri-Institutional Training Program in Chemical Biology, New York, NY, USA
| | - Maria E Falzone
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA
| | - Gerard Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA
- Erasmus University, Jette, Belgium
| | - Janice L Robertson
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical School, New York, NY, USA.
- Department of Anesthesiology, Weill Cornell Medical School, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
3
|
Elucidating the Mechanism Behind Sodium-Coupled Neurotransmitter Transporters by Reconstitution. Neurochem Res 2021; 47:127-137. [PMID: 34347265 DOI: 10.1007/s11064-021-03413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Sodium-coupled neurotransmitter transporters play a fundamental role in the termination of synaptic neurotransmission, which makes them a major drug target. The reconstitution of these secondary active transporters into liposomes has shed light on their molecular transport mechanisms. From the earliest days of the reconstitution technique up to today's single-molecule studies, insights from live functioning transporters have been indispensable for our understanding of their physiological impact. The two classes of sodium-coupled neurotransmitter transporters, the neurotransmitter: sodium symporters and the excitatory amino acid transporters, have vastly different molecular structures, but complementary proteoliposome studies have sought to unravel their ion-dependence and transport kinetics. Furthermore, reconstitution experiments have been used on both protein classes to investigate the role of e.g. the lipid environment, of posttranslational modifications, and of specific amino acid residues in transport. Techniques that allow the detection of transport at a single-vesicle resolution have been developed, and single-molecule studies have started to reveal single transporter kinetics, which will expand our understanding of how transport across the membrane is facilitated at protein level. Here, we review a selection of the results and applications where the reconstitution of the two classes of neurotransmitter transporters has been instrumental.
Collapse
|