1
|
Hu X, Cui W, Liu M, Zhang F, Zhao Y, Zhang M, Yin Y, Li Y, Che Y, Zhu X, Fan Y, Deng X, Wei M, Wu H. SnoRNAs: The promising targets for anti-tumor therapy. J Pharm Anal 2024; 14:101064. [PMID: 39634568 PMCID: PMC11613181 DOI: 10.1016/j.jpha.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 12/07/2024] Open
Abstract
Recently, small nucleolar RNAs (snoRNAs) have transcended the genomic "noise" to emerge as pivotal molecular markers due to their essential roles in tumor progression. Substantial evidence indicates a strong association between snoRNAs and critical clinical features such as tumor pathology and drug resistance. Historically, snoRNA research has concentrated on two classical mechanisms: 2'-O-ribose methylation and pseudouridylation. This review specifically summarizes the novel regulatory mechanisms and functional patterns of snoRNAs in tumors, encompassing transcriptional, post-transcriptional, and post-translational regulation. We further discuss the synergistic effect between snoRNA host genes (SNHGs) and snoRNAs in tumor progression. More importantly, snoRNAs extensively contribute to the development of tumor cell resistance as oncogenes or tumor suppressor genes. Accordingly, we provide a comprehensive review of the clinical diagnosis and treatment associated with snoRNAs and explore their significant potential as novel drug targets.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Min Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Fangxiao Zhang
- The Second Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingqi Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yuhang Yin
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Ying Che
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Yuxuan Fan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co., Ltd., Shenyang, 110000, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, China
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co., Ltd., Shenyang, 110000, China
| |
Collapse
|
2
|
Wylie D, Wang X, Yao J, Xu H, Ferrick-Kiddie EA, Iwase T, Krishnamurthy S, Ueno NT, Lambowitz AM. TGIRT-seq of Inflammatory Breast Cancer Tumor and Blood Samples Reveals Widespread Enhanced Transcription Impacting RNA Splicing and Intronic RNAs in Plasma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.26.23290469. [PMID: 37398275 PMCID: PMC10312853 DOI: 10.1101/2023.05.26.23290469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal breast cancer subtype but lacks unequivocal genomic differences or robust biomarkers that differentiate it from non-IBC. Here, Thermostable Group II intron Reverse Transcriptase RNA-sequencing (TGIRT-seq) revealed myriad differences in tumor samples, Peripheral Blood Mononuclear Cells (PBMCs), and plasma that distinguished IBC from non-IBC patients and healthy donors across all tested receptor-based subtypes. These included numerous differentially expressed protein-coding gene and non-coding RNAs in all three sample types, a granulocytic immune response in IBC PBMCs, and over-expression of antisense RNAs, suggesting wide-spread enhanced transcription in both IBC tumors and PBMCs. By using TGIRT-seq to quantitate Intron-exon Depth Ratios (IDRs) and mapping reads to both genome and transcriptome reference sequences, we developed methods for parallel analysis of transcriptional and post-transcriptional gene regulation. This analysis identified numerous differentially and non-differentially expressed protein-coding genes in IBC tumors and PBMCs with high IDRs, the latter reflecting rate-limiting RNA splicing that negatively impacts mRNA production. Mirroring gene expression differences in tumors and PBMCs, over-represented protein-coding gene RNAs in IBC patient plasma were largely intronic RNAs, while those in non-IBC patients and healthy donor plasma were largely mRNA fragments. Potential IBC biomarkers in plasma included T-cell receptor pre-mRNAs and intronic, LINE-1, and antisense RNAs. Our findings provide new insights into IBC and set the stage for monitoring disease progression and response to treatment by liquid biopsy. The methods developed for parallel transcriptional and post-transcriptional gene regulation analysis have potentially broad RNA-seq and clinical applications.
Collapse
Affiliation(s)
- Dennis Wylie
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Xiaoping Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | - Hengyi Xu
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| | | | - Toshiaki Iwase
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Savitri Krishnamurthy
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
- Inflammatory Breast Cancer Research Program and Clinic, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Cancer Biology Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
- Translational Clinical Research Program, University of Hawai'i Cancer Center, Honolulu, HI 96813
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
3
|
Wen X, Xu H, Woolley PR, Conway OM, Yao J, Matouschek A, Lambowitz AM, Paull TT. Senataxin deficiency disrupts proteostasis through nucleolar ncRNA-driven protein aggregation. J Cell Biol 2024; 223:e202309036. [PMID: 38717338 PMCID: PMC11080644 DOI: 10.1083/jcb.202309036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 05/12/2024] Open
Abstract
Senataxin is an evolutionarily conserved RNA-DNA helicase involved in DNA repair and transcription termination that is associated with human neurodegenerative disorders. Here, we investigated whether Senataxin loss affects protein homeostasis based on previous work showing R-loop-driven accumulation of DNA damage and protein aggregates in human cells. We find that Senataxin loss results in the accumulation of insoluble proteins, including many factors known to be prone to aggregation in neurodegenerative disorders. These aggregates are located primarily in the nucleolus and are promoted by upregulation of non-coding RNAs expressed from the intergenic spacer region of ribosomal DNA. We also map sites of R-loop accumulation in human cells lacking Senataxin and find higher RNA-DNA hybrids within the ribosomal DNA, peri-centromeric regions, and other intergenic sites but not at annotated protein-coding genes. These findings indicate that Senataxin loss affects the solubility of the proteome through the regulation of transcription-dependent lesions in the nucleus and the nucleolus.
Collapse
Affiliation(s)
- Xuemei Wen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Hengyi Xu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Phillip R. Woolley
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Olivia M. Conway
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Alan M. Lambowitz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Mohr G, Yao J, Park SK, Markham L, Lambowitz AM. Mechanisms used for cDNA synthesis and site-specific integration of RNA into DNA genomes by a reverse transcriptase-Cas1 fusion protein. SCIENCE ADVANCES 2024; 10:eadk8791. [PMID: 38608016 PMCID: PMC11014452 DOI: 10.1126/sciadv.adk8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded DNAs (ssDNAs) is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage defense nucleases. Our findings reveal mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.
Collapse
Affiliation(s)
- Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Laura Markham
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
6
|
Park SK, Mohr G, Yao J, Russell R, Lambowitz AM. Group II intron-like reverse transcriptases function in double-strand break repair. Cell 2022; 185:3671-3688.e23. [PMID: 36113466 PMCID: PMC9530004 DOI: 10.1016/j.cell.2022.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/16/2022] [Accepted: 08/14/2022] [Indexed: 01/26/2023]
Abstract
Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase θ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.
Collapse
Affiliation(s)
- Seung Kuk Park
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Georg Mohr
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jun Yao
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Rick Russell
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|