1
|
Herrera-Ochoa D, Llano I, Ripoll C, Cybulski P, Kreuzer M, Rocha S, García-Frutos EM, Bravo I, Garzón-Ruiz A. Protein aggregation monitoring in cells under oxidative stress: a novel fluorescent probe based on a 7-azaindole-BODIPY derivative. J Mater Chem B 2024; 12:7577-7590. [PMID: 38984432 DOI: 10.1039/d4tb00567h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The development of new fluorescent probes as molecular sensors is a critical step for the understanding of molecular mechanisms. BODIPY-based probes offer versatility due to their high fluorescence quantum yields, photostability, and tunable absorption/emission wavelengths. Here, we report the synthesis and evaluation of a novel 7-azaindole-BODIPY derivative to probe hydrophobic proteins as well as protein misfolding and aggregation. In organic solvents, this compound shows two efficiently interconverting emissive excited states. In aqueous environments, it forms molecular aggregates with unique photophysical properties. The complex photophysics of the 7-azaindole-BODIPY derivative was explored for sensing applications. In the presence of albumin, the compound is stabilized in hydrophobic protein regions, significantly increasing its fluorescence emission intensity and lifetime. Similar effects occur in the presence of protein aggregates but not with other macromolecules like pepsin, DNA, Ficoll 40, and coconut oil. Fluorescence lifetime imaging microscopy (FLIM) and two-photon fluorescence microscopy on breast (MCF-7) and lung (A549) cancer cells incubated with this compound display longer fluorescence lifetimes and higher emission intensity under oxidative stress. Synchrotron FTIR micro spectroscopy confirmed that the photophysical changes observed were due to protein misfolding and aggregation caused by the oxidative stress. These findings demonstrate that this compound can serve as a fluorescent probe to monitor protein misfolding and aggregation triggered by oxidative stress.
Collapse
Affiliation(s)
- Diego Herrera-Ochoa
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Iván Llano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
| | - Consuelo Ripoll
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Pierre Cybulski
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Martin Kreuzer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Cerdanyola Del Vallès, Barcelona, Spain
| | - Susana Rocha
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven Chem&Tech, Celestijnenlaan 200F, Leuven, 3001, Belgium.
| | - Eva M García-Frutos
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Iván Bravo
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| | - Andrés Garzón-Ruiz
- Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, Av. Dr José María Sánchez Ibáñez, s/n, 02071 Albacete, Spain.
| |
Collapse
|
2
|
Yamashita M, Tamamitsu M, Kirisako H, Goda Y, Chen X, Hattori K, Ota S. High-Throughput 3D Imaging Flow Cytometry of Suspended Adherent 3D Cell Cultures. SMALL METHODS 2024; 8:e2301318. [PMID: 38133483 DOI: 10.1002/smtd.202301318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Indexed: 12/23/2023]
Abstract
3D cell cultures are indispensable in recapitulating in vivo environments. Among the many 3D culture methods, culturing adherent cells on hydrogel beads to form spheroid-like structures is a powerful strategy for maintaining high cell viability and functions in the adherent states. However, high-throughput, scalable technologies for 3D imaging of individual cells cultured on the hydrogel scaffolds are lacking. This study reports the development of a high throughput, scalable 3D imaging flow cytometry platform for analyzing spheroid models. This platform is realized by integrating a single objective fluorescence light-sheet microscopy with a microfluidic device that combines hydrodynamic and acoustofluidic focusing techniques. This integration enabled unprecedentedly high-throughput and scalable optofluidic 3D imaging, processing 1310 spheroids consisting of 28 117 cells min-1. The large dataset obtained enables precise quantification and comparison of the nuclear morphology of adhering and suspended cells, revealing that the adhering cells have smaller nuclei with less rounded surfaces. This platform's high throughput, robustness, and precision for analyzing the morphology of subcellular structures in 3D culture models hold promising potential for various biomedical analyses, including image-based phenotypic screening of drugs with spheroids or organoids.
Collapse
Affiliation(s)
- Minato Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Miu Tamamitsu
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiromi Kirisako
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yuki Goda
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Xiaoyao Chen
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kazuki Hattori
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
3
|
Morsby JJ, Zhang Z, Burchett A, Datta M, Smith BD. Ratiometric near-infrared fluorescent probe for nitroreductase activity enables 3D imaging of hypoxic cells within intact tumor spheroids. Chem Sci 2024; 15:3633-3639. [PMID: 38455008 PMCID: PMC10915858 DOI: 10.1039/d3sc06058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
Fluorescent molecular probes that report nitroreductase activity have promise as imaging tools to elucidate the biology of hypoxic cells and report the past hypoxic history of biomedical tissue. This study describes the synthesis and validation of a "first-in-class" ratiometric, hydrophilic near-infrared fluorescent molecular probe for imaging hypoxia-induced nitroreductase activity in 2D cell culture monolayers and 3D multicellular tumor spheroids. The probe's molecular structure is charge-balanced and the change in ratiometric signal is based on Förster Resonance Energy Transfer (FRET) from a deep-red, pentamethine cyanine donor dye (Cy5, emits ∼660 nm) to a linked near-infrared, heptamethine cyanine acceptor dye (Cy7, emits ∼780 nm). Enzymatic reduction of a 4-nitrobenzyl group on the Cy7 component induces a large increase in Cy7/Cy5 fluorescence ratio. The deep penetration of near-infrared light enables 3D optical sectioning of intact tumor spheroids, and visualization of individual hypoxic cells (i.e., cells with raised Cy7/Cy5 ratio) as a new way to study tumor spheroids. Beyond preclinical imaging, the near-infrared fluorescent molecular probe has high potential for ratiometric imaging of hypoxic tissue in living subjects.
Collapse
Affiliation(s)
- Janeala J Morsby
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall, Notre Dame IN 46556 USA
| | - Zhumin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall, Notre Dame IN 46556 USA
| | - Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame 145 Multidisciplinary Engineering Research Building, Notre Dame IN 46556 USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame 145 Multidisciplinary Engineering Research Building, Notre Dame IN 46556 USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame 251 Nieuwland Science Hall, Notre Dame IN 46556 USA
| |
Collapse
|