1
|
Collins M, Ibeanu N, Grabowska WR, Awwad S, Khaw PT, Brocchini S, Khalili H. Bispecific FpFs: a versatile tool for preclinical antibody development. RSC Chem Biol 2024:d4cb00130c. [PMID: 39347456 PMCID: PMC11427889 DOI: 10.1039/d4cb00130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
We previously described FpFs 1̲ (Fab-PEG-Fab) as binding mimetics of IgGs. FpFs are prepared with di(bis-sulfone) conjugation reagents 3̲ that undergo disulfide rebridging conjugation with the accessible disulfide of each Fab (Scheme 1). We have now prepared bispecific FpFs 2̲ (bsFpF and Fab1-PEG-Fab2) as potential bispecific antibody mimetics with the intent that bsFpFs could be used in preclinical antibody development since sourcing bispecific antibodies may be challenging during preclinical research. The di(bis-sulfone) reagent 3̲ was first used to prepare a bsFpF 2̲ by the sequential conjugation of a first Fab and then a second Fab to another target (Scheme 2). Seeking to improve bsFpF synthesis, the asymmetric conjugation reagent, bis-sulfone bis-sulfide 1̲6̲, with different thiol conjugation reactivities at each terminus (Scheme 4) was examined and the bsFpFs appeared to be formed at similar conversion to the di(bis-sulfone) reagent 3̲. To explore the advantages of using common intermediates in the preparation of bsFpF families, we investigated bsFpF synthesis with a protein conjugation-ligation approach (Scheme 5). Reagents with a bis-sulfone moiety for conjugation on one PEG terminus and a ligation moiety on the other terminus were examined. Bis-sulfone PEG trans-cyclooctene (TCO) 2̲8̲ and bis-sulfone PEG tetrazine (Tz) 3̲0̲ were used to prepare several bsFpFs targeting various therapeutic targets (TNF-α, IL6R, IL17, and VEGF) and tissue affinity targets (hyaluronic acid and collagen II). Surface plasmon resonance (SPR) binding studies indicated that there was little difference between the dissociation rate constant (k d) for the unmodified Fab, mono-conjugated PEG-Fab and the corresponding Fab in a bsFpF. The Fab association rate (k a) in the bsFpF was slower than for PEG-Fab, which may be because of mass differences that influence SPR results. These observations suggest that each Fab will bind to its target independently of the other Fab and that bsFpF binding profiles can be estimated using the corresponding PEG-Fab conjugates.
Collapse
Affiliation(s)
- Matthew Collins
- School of Health, Sport and Bioscience, University of East London London UK
| | - Nkiru Ibeanu
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Sahar Awwad
- School of Pharmacy, University College London London UK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology London EC1V 9EL UK
| | | | - Hanieh Khalili
- School of Pharmacy, University College London London UK
- School of Biomedical Science, University of West London London W5 5RF UK
| |
Collapse
|
2
|
Deng F, Qiu Y, Zhang X, Guo N, Hu J, Yang W, Shang W, Liu B, Qin S. GB12-09, a bispecific antibody targeting IL4Rα and IL31Rα for atopic dermatitis therapy. Antib Ther 2024; 7:77-87. [PMID: 38371956 PMCID: PMC10873276 DOI: 10.1093/abt/tbad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition characterized by dysregulated immune responses. The key mediators of AD pathogenesis are T helper 2 (TH2) cells and TH2 cytokines. Targeting interleukin 4 (IL4), IL13 or IL31 has become a pivotal focus in both research and clinical treatments for AD. However, the need remains pressing for the development of a more effective and safer therapy, as the current approaches often yield low response rates and adverse effects. In response to this challenge, we have engineered a immunoglobulin G-single-chain fragment variable (scFv) format bispecific antibody (Ab) designed to concurrently target IL4R and IL31R. Our innovative design involved sequence optimization of VL-VH and the introduction of disulfide bond (VH44-VL100) within the IL31Rα Ab scFv region to stabilize the scFv structure. Our bispecific Ab efficiently inhibited the IL4/IL13/IL31 signaling pathways in vitro and reduced serum immunoglobulin E and IL31 levels in vivo. Consequently, this intervention led to improved inflammation profiles and notable amelioration of AD symptoms. This research highlighted a novel approach to AD therapy by employing bispecific Ab targeting IL4Rα and IL31Rα with potent efficacy.
Collapse
Affiliation(s)
- Feiyan Deng
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Yuxin Qiu
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Xiangling Zhang
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Nining Guo
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Junhong Hu
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Wenjie Yang
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Wei Shang
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| | - Bicheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing 999077, China
| | - Suofu Qin
- Drug Discovery, Center for Research and Development, Kexing BioPharma Co., Ltd, Shenzhen 518057, China
| |
Collapse
|
3
|
Grevtsev AS, Azarian AD, Misorin AK, Chernyshova DO, Iakovlev PA, Karbyshev MS. Towards the Application of a Label-Free Approach for Anti-CD47/PD-L1 Bispecific Antibody Discovery. BIOSENSORS 2023; 13:1022. [PMID: 38131782 PMCID: PMC10742149 DOI: 10.3390/bios13121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The engineering of bispecific antibodies that exhibit optimal affinity and functional activity presents a significant scientific challenge. To tackle this, investigators employ an assortment of protein assay techniques, such as label-free interaction methodologies, which offer rapidity and convenience for the evaluation of extensive sample sets. These assays yield intricate data pertaining to the affinity towards target antigens and Fc-receptors, instrumental in predicting cellular test outcomes. Nevertheless, the fine-tuning of affinity is of paramount importance to mitigate potential adverse effects while maintaining efficient obstruction of ligand-receptor interactions. In this research, biolayer interferometry (BLI) was utilized to probe the functional characteristics of bispecific antibodies targeting cluster of differentiation 47 (CD47) and programmed death-ligand 1 (PD-L1) antigens, encompassing affinity, concurrent binding to two disparate antigens, and the inhibition of ligand-receptor interactions. The findings derived from BLI were juxtaposed with data from in vitro signal regulatory protein-α (SIRP-α)/CD47 blockade reporter bioassays for two leading bispecific antibody candidates, each demonstrating distinct affinity to CD47.
Collapse
|
4
|
Mariottini D, Bracaglia S, Barbero L, Fuchs SW, Saal C, Moniot S, Knuehl C, Baranda L, Ranallo S, Ricci F. Bispecific Antibody Detection Using Antigen-Conjugated Synthetic Nucleic Acid Strands. ACS Sens 2023; 8:4014-4019. [PMID: 37856082 PMCID: PMC10683503 DOI: 10.1021/acssensors.3c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
We report here the development of two different sensing strategies based on the use of antigen-conjugated nucleic acid strands for the detection of a bispecific antibody against the tumor-related proteins Mucin1 and epidermal growth factor receptor. Both approaches work well in serum samples (nanomolar sensitivity), show high specificity against the two monospecific antibodies, and are rapid. The results presented here demonstrate the versatility of DNA-based platforms for the detection of bispecific antibodies and could represent a versatile alternative to other more reagent-intensive and time-consuming analytical approaches.
Collapse
Affiliation(s)
- Davide Mariottini
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Bracaglia
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luca Barbero
- RBM-Merck
(an affiliate of Merck KGaA), Via Ribes 1, 10010 Turin, Italy
| | | | - Christoph Saal
- Merck
KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | | | | | - Lorena Baranda
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simona Ranallo
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Francesco Ricci
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|