1
|
Hosie S, Abo-Shaban T, Mou K, Balasuriya GK, Mohsenipour M, Alamoudi MU, Filippone RT, Belz GT, Franks AE, Bornstein JC, Nurgali K, Hill-Yardin EL. Faster Gastrointestinal Transit, Reduced Small Intestinal Smooth Muscle Tone and Dysmotility in the Nlgn3R451C Mouse Model of Autism. Int J Mol Sci 2024; 25:832. [PMID: 38255906 PMCID: PMC10815490 DOI: 10.3390/ijms25020832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Individuals with autism often experience gastrointestinal issues but the cause is unknown. Many gene mutations that modify neuronal synapse function are associated with autism and therefore may impact the enteric nervous system that regulates gastrointestinal function. A missense mutation in the Nlgn3 gene encoding the cell adhesion protein Neuroligin-3 was identified in two brothers with autism who both experienced severe gastrointestinal dysfunction. Mice expressing this mutation (Nlgn3R451C mice) are a well-studied preclinical model of autism and show autism-relevant characteristics, including impaired social interaction and communication, as well as repetitive behaviour. We previously showed colonic dysmotility in response to GABAergic inhibition and increased myenteric neuronal numbers in the small intestine in Nlgn3R451C mice bred on a mixed genetic background. Here, we show that gut dysfunction is a persistent phenotype of the Nlgn3 R451C mutation in mice backcrossed onto a C57BL/6 background. We report that Nlgn3R451C mice show a 30.9% faster gastrointestinal transit (p = 0.0004) in vivo and have 6% longer small intestines (p = 0.04) compared to wild-types due to a reduction in smooth muscle tone. In Nlgn3R451C mice, we observed a decrease in resting jejunal diameter (proximal jejunum: 10.6% decrease, p = 0.02; mid: 9.8%, p = 0.04; distal: 11.5%, p = 0.009) and neurally regulated dysmotility as well as shorter durations of contractile complexes (mid: 25.6% reduction in duration, p = 0.009; distal: 30.5%, p = 0.004) in the ileum. In Nlgn3R451C mouse colons, short contractions were inhibited to a greater extent (57.2% by the GABAA antagonist, gabazine, compared to 40.6% in wild-type mice (p = 0.007). The inhibition of nitric oxide synthesis decreased the frequency of contractile complexes in the jejunum (WT p = 0.0006, Nlgn3R451C p = 0.002), but not the ileum, in both wild-type and Nlgn3R451C mice. These findings demonstrate that changes in enteric nervous system function contribute to gastrointestinal dysmotility in mice expressing the autism-associated R451C missense mutation in the Neuroligin-3 protein.
Collapse
Affiliation(s)
- Suzanne Hosie
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Tanya Abo-Shaban
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Kevin Mou
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Gayathri K. Balasuriya
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Mitra Mohsenipour
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
| | - Mohammed U. Alamoudi
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Gabrielle T. Belz
- Frazer Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ashley E. Franks
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Life Sciences, La Trobe University, Melbourne, VIC 3083, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3021, Australia
- Department of Medicine Western Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3083, Australia (T.A.-S.)
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|