1
|
Uthirapathy S, Ahmed AT, Jawad M, Jain V, Ballal S, Abdul Kareem Al-Hetty HR, Khandelwal G, Arya R, Muthena Kariem, Mustafa YF. Tripartite motif (TRIM) proteins roles in the regulation of immune system responses: Focus on autoimmune diseases. Exp Cell Res 2025; 444:114379. [PMID: 39667699 DOI: 10.1016/j.yexcr.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The tripartite motif (TRIM) proteins are well-studied as essential modulators of many processes, including the modulation of several pathways linked to immunological reactions. Most TRIM family members can polyubiquitinate the targeted proteins by acting as E3 ubiquitin ligases. According to current research, TRIMs play a critical role in innate immune response via modifying transcription factors, pattern recognition receptors (PRRs), and key adaptor proteins within innate immunity. It is becoming clearer that TRIMs play important roles in adaptive immune response, especially in the stimulation and promotion of T cells. We highlight the E3 ubiquitin ligase functions of TRIMs in the PRRs axis linked to autoimmune disorders. By focusing on TRIM family members, we also clarify the new approaches to regulating immunological reactions to alleviate autoimmunity.
Collapse
Affiliation(s)
- Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | | | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Gaurav Khandelwal
- Department of Nephrology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Muthena Kariem
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
2
|
SOUZA MAYQUEPAULOMDE, FREITAS BÁRBARACAROLINEG, HOLANDA GUSTAVOM, DINIZ JUNIOR JOSÉANTÔNIOP, CRUZ ANACECÍLIAR. Correlation of cGAS, STING, INF-α and INF-β gene expression with Zika virus kinetics in primary culture of microglia and neurons from BALB/c mice. AN ACAD BRAS CIENC 2022; 94:e20211189. [DOI: 10.1590/0001-3765202220211189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/14/2022] [Indexed: 11/22/2022] Open
|
3
|
Anderson JA, Loes AN, Waddell GL, Harms MJ. Tracing the evolution of novel features of human Toll-like receptor 4. Protein Sci 2019; 28:1350-1358. [PMID: 31075178 PMCID: PMC6566505 DOI: 10.1002/pro.3644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 4 (TLR4) is a critical innate immune protein that activates inflammation in response to extracellular cues. Much of the work to understand how the protein works in humans has been done using mouse models. Although human and mouse TLR4 have many shared features, they have also diverged significantly since their last common ancestor, acquiring 277 sequence differences. Functional differences include the extent of ligand-independent activation, whether lipid IVa acts as an antagonist or agonist, and the relative species cross-compatibility of their MD-2 cofactor. We set out to understand the evolutionary origins for these functional differences between human and mouse TLR4. Using a combination of phylogenetics, ancestral sequence reconstruction, and functional characterization, we found that evolutionary changes to the human TLR4, rather than changes to the mouse TLR4, were largely responsible for these functional changes. Human TLR4 repressed ancestral ligand-independent activity and gained antagonism to lipid IVa. Additionally, mutations to the human TLR4 cofactor MD-2 led to lineage-specific incompatibility between human and opossum TLR4 complex members. These results were surprising, as mouse TLR4 has acquired many more mutations than human TLR4 since their last common ancestor. Our work has polarized this set of transitions and sets up work to study the mechanistic underpinnings for the evolution of new functions in TLR4.
Collapse
Affiliation(s)
- Jeremy A. Anderson
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Andrea N. Loes
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Grace L. Waddell
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| | - Michael J. Harms
- Institute for Molecular Biology, University of OregonEugeneOregon97403
- Department of Chemistry and BiochemistryUniversity of OregonEugeneOregon97403
| |
Collapse
|
4
|
Danger-Associated Molecular Patterns (DAMPs): the Derivatives and Triggers of Inflammation. Curr Allergy Asthma Rep 2018; 18:63. [PMID: 30267163 DOI: 10.1007/s11882-018-0817-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Allergen is an umbrella term for irritants of diverse origin. Along with other offenders such as pathogens, mutagens, xenobiotics, and pollutants, allergens can be grouped as inflammatory agents. Danger-associated molecular patterns (DAMPs) are altered metabolism products of necrotic or stressed cells, which are deemed as alarm signals by the innate immune system. Like inflammation, DAMPs play a role in correcting the altered physiological state, but in excess, they can be lethal due to their signal transduction roles. In a vicious loop, inflammatory agents are DAMP generators and DAMPs create a pro-inflammatory state. Only a handful of DAMPs such as uric acid, mtDNA, extracellular ATP, HSPs, amyloid β, S100, HMGB1, and ECM proteins have been studied till now. A large number of DAMPs are still obscure, in need to be unveiled. The identification and functional characterization of those DAMPs in inflammation pathways can be insightful. RECENT FINDINGS As inflammation and immune activation have been implicated in almost all pathologies, studies on them have been intensified in recent times. Consequently, the pathologic mechanisms of various DAMPs have emerged. Following PRR ligation, the activation of inflammasome, MAPK, and NF-kB is some of the common pathways. The limited number of recognized DAMPs are only a fraction of the vast array of other DAMPs. In fact, any misplaced or abnormal level of metabolite can be a DAMP. Sophisticated analysis studies can reveal the full profile of the DAMPs. Lowering the level of DAMPs is useful therapeutic intervention but certainly not as effective as avoiding the DAMP generators, i.e., the inflammatory agents. So, rather than mitigating DAMPs, efforts should be focused on the elimination of inflammatory agents.
Collapse
|
5
|
The Role of Immunosenescence in Neurodegenerative Diseases. Mediators Inflamm 2018; 2018:6039171. [PMID: 29706800 PMCID: PMC5863336 DOI: 10.1155/2018/6039171] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/15/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022] Open
Abstract
Aging is characterized by the progressive decline of physiological function and tissue homeostasis leading to increased vulnerability, degeneration, and death. Aging-related changes of the innate and adaptive immune system include decline in the preservation and enhancement of many immune functions, such as changes in the number of circulating monocytic and dendritic cells, thymic involution, T cell polyfunctionality, or production of proinflammatory cytokines, and are defined as immunosenescence. Inflammatory functions are increased with age, causing the chronic low-grade inflammation, referred to as inflamm-aging, that contribute, together with immunosenescence, to neurodegenerative diseases. In this review, we discuss the link between the immune and nervous systems and how the immunosenescence and inflamm-aging can contribute to neurodegenerative diseases.
Collapse
|
6
|
Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv Drug Deliv Rev 2017; 110-111:169-187. [PMID: 27356149 DOI: 10.1016/j.addr.2016.06.013] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022]
Abstract
Self-assembled peptides have shown outstanding characteristics for vaccine delivery and drug targeting. Peptide molecules can be rationally designed to self-assemble into specific nanoarchitectures in response to changes in their assembly environment including: pH, temperature, ionic strength, and interactions between host (drug) and guest molecules. The resulting supramolecular nanostructures include nanovesicles, nanofibers, nanotubes, nanoribbons, and hydrogels and have a diverse range of mechanical and physicochemical properties. These molecules can be designed for cell-specific targeting by including adhesion ligands, receptor recognition ligands, or peptide-based antigens in their design, often in a multivalent display. Depending on their design, self-assembled peptide nanostructures have advantages in biocompatibility, stability against enzymatic degradation, encapsulation of hydrophobic drugs, sustained drug release, shear-thinning viscoelastic properties, and/or adjuvanting properties. These molecules can also act as intracellular transporters and respond to changes in the physiological environment. Furthermore, this class of materials has shown sequence- and structure-dependent impacts on the immune system that can be tailored to non-immunogenic for drug targeting, and immunogenic for vaccine delivery. This review explores self-assembled peptide nanostructures (beta sheets, alpha helices, peptide amphiphiles, amino acid pairing, elastin like polypeptides, cyclic peptides, short peptides, Fmoc peptides, and peptide hydrogels) and their application in vaccine delivery and drug targeting.
Collapse
|
7
|
Fujishima S. Organ dysfunction as a new standard for defining sepsis. Inflamm Regen 2016; 36:24. [PMID: 29259697 PMCID: PMC5725936 DOI: 10.1186/s41232-016-0029-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023] Open
Abstract
Despite advances in intensive care and the widespread use of standardized care included in the Surviving Sepsis Campaign Guidelines, sepsis remains a leading cause of death, and the prevalence of sepsis increases concurrent with the aging process. The diagnosis of sepsis was originally based on the evidence of persistent bacteremia (septicemia) but was modified in 1992 to incorporate systemic inflammatory response syndrome (SIRS). Since then, SIRS has become the gold standard for the diagnosis of sepsis. In 2016, the Society of Critical Care Medicine and the European Society of Intensive Care Medicine published a new clinical definition of sepsis that is called Sepsis-3. In contrast to previous definitions, Sepsis-3 is based on organ dysfunctions and uses a sequential organ failure (SOFA) score as an index. Thus, patients diagnosed with respect to Sepsis-3 will inevitably represent a different population than those previously diagnosed. We assume that this drastic change in clinical definition will affect not only clinical practice but also the viewpoint and focus of basic research. This review intends to summarize the pathophysiology of sepsis and organ dysfunction and discusses potential directions for future research.
Collapse
Affiliation(s)
- Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Patel S, Meher B. A review on emerging frontiers of house dust mite and cockroach allergy research. Allergol Immunopathol (Madr) 2016; 44:580-593. [PMID: 26994963 DOI: 10.1016/j.aller.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Currently, mankind is afflicted with diversified health issues, allergies being a common, yet little understood malady. Allergies, the outcome of a baffled immune system encompasses myriad allergens and causes an array of health consequences, ranging from transient to recurrent and mild to fatal. Indoor allergy is a serious hypersensitivity in genetically-predisposed people, triggered by ingestion, inhalation or mere contact of allergens, of which mite and cockroaches are one of the most-represented constituents. Arduous to eliminate, these aeroallergens pose constant health challenges, mostly manifested as respiratory and dermatological inflammations, leading to further aggravations if unrestrained. Recent times have seen an unprecedented endeavour to understand the conformation of these allergens, their immune manipulative ploys and other underlying causes of pathogenesis, most importantly therapies. Yet a large section of vulnerable people is ignorant of these innocuous-looking immune irritants, prevailing around them, and continues to suffer. This review aims to expedite this field by a concise, informative account of seminal findings in the past few years, with particular emphasis on leading frontiers like genome-wide association studies (GWAS), epitope mapping, metabolomics etc. Drawbacks linked to current approaches and solutions to overcome them have been proposed.
Collapse
|
9
|
Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F. Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 2015; 59:109-19. [PMID: 25958775 DOI: 10.1111/jpi.12245] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense.
Collapse
Affiliation(s)
- Hongbo Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Su
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yang Jiang
- Centre for Organismal Studies Heidelberg, Heidelberg university, Heidelberg, Germany
| | - Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Kasthuri SR, Wan Q, Whang I, Lim BS, Yeo SY, Choi CY, Lee J. Functional characterization of the evolutionarily preserved mitochondrial antiviral signaling protein (MAVS) from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:399-406. [PMID: 25107693 DOI: 10.1016/j.fsi.2014.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial immune defense is evolutionarily preserved in all organisms. Mammals have developed robust, protein-based antiviral defenses, which are under constant investigation. Studies have provided evidences for the various fish immune factors sharing similarity with those of mammals. In this study, we have identified an ortholog of mitochondrial antiviral signaling protein from rock bream, Oplegnathus fasciatus. RbMAVS cDNA possesses an open reading frame (ORF) of 1758 bp coding for a protein of 586 amino acids with molecular mass of approximately 62 kDa and isoelectric point of 4.6. In silico analysis of RbMAVS protein revealed a caspase recruitment domain (CARD), a proline rich domain and a transmembrane domain. RbMAVS protein also contains a putative TRAF2 binding motif, (319)PVQDT(323). Primary sequence comparison of RbMAVS with other orthologues revealed heterogeneity towards the C-terminus after the CARD region. RbMAVS transcripts were evident in all the examined tissues. RbMAVS expression was induced in vivo after poly I:C challenge in peripheral blood cells, liver, head kidney and spleen tissues. Over-expression of RbMAVS potently inhibited marine birnavirus (MABV) infection in rock bream heart cells and induced various cytokines and signaling molecules in vitro. Thus, RbMAVS is an antiviral protein and potentially involved in the recognition and signaling of antiviral defense mechanism in rock bream.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Sang-Yeob Yeo
- Department of Biotechnology, Division of Applied Chemistry & Biotechnology, Hanbat National University, Daejeon 305-719, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
11
|
Olguín Y, Carrascosa LG, Lechuga LM, Young M. The effects of lipids and surfactants on TLR5-proteoliposome functionality for flagellin detection using surface plasmon resonance biosensing. Talanta 2014; 126:136-44. [PMID: 24881544 DOI: 10.1016/j.talanta.2014.03.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022]
Abstract
The use of proteoliposomes as affinity elements in conjunction with a surface plasmon resonance sensor is a high-sensitivity alternative for the detection of multiple analytes. However, one of the most important aspects of these conformations is maintaining the functionality of the immobilized protein, which is determined by the choice of lipids and surfactants employed in the reconstitutions. Previously, we demonstrated the functionality of TLR5-proteoliposomes as screening affinity elements of bacterial flagellin. In this new study we change the conditions of immobilization of TLR5 and evaluate how the fluidity of the membrane and the final size of the liposomes affect the functionality of the construct and thus increase their utility as an affinity element for design of new biosensors. In particular, we used reconstructions into preformed liposomes composed of the lipids POPC, POPC-DMPC and POPC-POPE mediated by the use of surfactants OG, Triton X100, and DDM, respectively. The affinity results were evaluated by SPR technology proteoliposomes and were correlated with the anisotropic change in the membrane status; the final sizes of the proteoliposomes were estimated. Our results clearly show the dependence of fluidity and final size of the proteoliposomes with surface plasmon resonance affinity measurements.
Collapse
Affiliation(s)
- Y Olguín
- Biotechnology Center, Federico Santa Maria Technical University, Valparaíso, Chile.
| | - L G Carrascosa
- Nanobiosensor and Bioanalytical Applications Group, Institut Catàla de Nanociencia i Nanotecnología (ICN2), CSIC and CIBER-BBN, Bellaterra, Barcelona, Spain
| | - L M Lechuga
- Nanobiosensor and Bioanalytical Applications Group, Institut Catàla de Nanociencia i Nanotecnología (ICN2), CSIC and CIBER-BBN, Bellaterra, Barcelona, Spain
| | - M Young
- Biotechnology Center, Federico Santa Maria Technical University, Valparaíso, Chile
| |
Collapse
|
12
|
Myoloid-Related Protein 8, an Endogenous Ligand of Toll-Like Receptor 4, Is Involved in Epileptogenesis of Mesial Temporal Lobe Epilepsy Via Activation of the Nuclear Factor-κB Pathway in Astrocytes. Mol Neurobiol 2013; 49:337-51. [DOI: 10.1007/s12035-013-8522-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/24/2013] [Indexed: 11/25/2022]
|
13
|
Andries O, Filette MD, De Smedt SC, Demeester J, Poucke MV, Peelman L, Sanders NN. Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells. J Control Release 2013; 167:157-66. [DOI: 10.1016/j.jconrel.2013.01.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/14/2013] [Accepted: 01/30/2013] [Indexed: 12/12/2022]
|
14
|
Damiens S, Danze PM, Drucbert AS, Choteau L, Jouault T, Poulain D, Sendid B. Characterization of the recognition of Candida species by mannose-binding lectin using surface plasmon resonance. Analyst 2013; 138:2477-82. [DOI: 10.1039/c3an36670g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Miernikiewicz P, Owczarek B, Piotrowicz A, Boczkowska B, Rzewucka K, Figura G, Letarov A, Kulikov E, Kopciuch A, Świtała-Jeleń K, Oślizło A, Hodyra K, Gubernator J, Dąbrowska K. Recombinant expression and purification of T4 phage Hoc, Soc, gp23, gp24 proteins in native conformations with stability studies. PLoS One 2012; 7:e38902. [PMID: 22808021 PMCID: PMC3396610 DOI: 10.1371/journal.pone.0038902] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Understanding the biological activity of bacteriophage particles is essential for rational design of bacteriophages with defined pharmacokinetic parameters and to identify the mechanisms of immunobiological activities demonstrated for some bacteriophages. This work requires highly purified preparations of the individual phage structural proteins, possessing native conformation that is essential for their reactivity, and free of incompatible biologically active substances such as bacterial lipopolysaccharide (LPS). In this study we describe expression in E. coli and purification of four proteins forming the surface of the bacteriophage T4 head: gp23, gp24, gphoc and gpsoc. We optimized protein expression using a set of chaperones for effective production of soluble proteins in their native conformations. The assistance of chaperones was critical for production of soluble gp23 (chaperone gp31 of T4 phage) and of gpsoc (chaperone TF of E. coli). Phage head proteins were purified in native conditions by affinity chromatography and size-exclusion chromatography. Two-step LPS removal allowed immunological purity grade with the average endotoxin activity less than 1 unit per ml of protein preparation. The secondary structure and stability of the proteins were studied using circular dichroism (CD) spectrometry, which confirmed that highly purified proteins preserve their native conformations. In increasing concentration of a denaturant (guanidine hydrochloride), protein stability was proved to increase as follows: gpsoc, gp23, gphoc. The denaturation profile of gp24 protein showed independent domain unfolding with the most stable larger domain. The native purified recombinant phage proteins obtained in this work were shown to be suitable for immunological experiments in vivo and in vitro.
Collapse
Affiliation(s)
- Paulina Miernikiewicz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Owczarek
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Piotrowicz
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Barbara Boczkowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Kamila Rzewucka
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Grzegorz Figura
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Eugene Kulikov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | - Agnieszka Kopciuch
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Kinga Świtała-Jeleń
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Oślizło
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katarzyna Hodyra
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- * E-mail:
| |
Collapse
|