1
|
Wang ZY, Meng YR, Hu J, Qiu JG, Zhang CY. Development of a single-molecule biosensor with ultra-low background for simultaneous detection of multiple retroviral DNAs. J Mater Chem B 2022; 10:5465-5472. [DOI: 10.1039/d2tb00969b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human T-cell lymphotropic virus type I and type II (HTLV-I and HTLV-II) are two most prevalent subtypes of HTLVs, and they usually infect individuals asymptomatically and may induce various diseases....
Collapse
|
2
|
Naito T, Yasunaga JI, Mitobe Y, Shirai K, Sejima H, Ushirogawa H, Tanaka Y, Nakamura T, Hanada K, Fujii M, Matsuoka M, Saito M. Distinct gene expression signatures induced by viral transactivators of different HTLV-1 subgroups that confer a different risk of HAM/TSP. Retrovirology 2018; 15:72. [PMID: 30400920 PMCID: PMC6219256 DOI: 10.1186/s12977-018-0454-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, there is an association between HTLV-1 tax subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. To investigate the role of HTLV-1 subgroups in viral pathogenesis, we studied the functional difference in the subgroup-specific viral transcriptional regulators Tax and HBZ using microarray analysis, reporter gene assays, and evaluation of viral-host protein–protein interaction. Results (1) Transcriptional changes in Jurkat Tet-On human T-cells that express each subgroup of Tax or HBZ protein under the control of an inducible promoter revealed different target gene profiles; (2) the number of differentially regulated genes induced by HBZ was 2–3 times higher than that induced by Tax; (3) Tax and HBZ induced the expression of different classes of non-coding RNAs (ncRNAs); (4) the chemokine CXCL10, which has been proposed as a prognostic biomarker for HAM/TSP, was more efficiently induced by subgroup-A Tax (Tax-A) than subgroup-B Tax (Tax-B), in vitro as well as in unmanipulated (ex vivo) PBMCs obtained from HAM/TSP patients; (5) reporter gene assays indicated that although transient Tax expression in an HTLV-1-negative human T-cell line activated the CXCL10 gene promoter through the NF-κB pathway, there was no difference in the ability of each subgroup of Tax to activate the CXCL10 promoter; however, (6) chromatin immunoprecipitation assays showed that the ternary complex containing Tax-A is more efficiently recruited onto the promoter region of CXCL10, which contains two NF-κB binding sites, than that containing Tax-B. Conclusions Our results indicate that different HTLV-1 subgroups are characterized by different patterns of host gene expression. Differential expression of pathogenesis-related genes by subgroup-specific Tax or HBZ may be associated with the onset of HAM/TSP. Electronic supplementary material The online version of this article (10.1186/s12977-018-0454-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yuichi Mitobe
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kazumasa Shirai
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Hiroe Sejima
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroshi Ushirogawa
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tatsufumi Nakamura
- Department of Social Work, Faculty of Human and Social Studies, Nagasaki International University, 2825-7 Huis Ten Bosch Machi, Sasebo, Nagasaki, 859-3298, Japan
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology, Rheumatology and Infectious Disease, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
3
|
Different molecular mechanisms of HTLV-1 and HIV LTR activation by TPA. Biochem Biophys Res Commun 2018; 500:538-543. [PMID: 29660338 DOI: 10.1016/j.bbrc.2018.04.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
HTLV-1 and HIV-1 are retroviruses involved in different human diseases. However, following infection, these viruses inter into a latent state. Tax and Tat are regarded as trans-activators of HTLV-1 and HIV-1 respectively. As it known, during the latent state the infected cells contain low Tax and Tat protein levels, so the activation of these viruses must be independent of these proteins. Here we focus on exploring the mechanism of activation of these viruses by 12-O-tetradecanoylphorbol-13-acetate (TPA), which is a potent activator of protein kinase C (PKC) and considered as a stress-inducing agent. Our results showed that short exposure to TPA considerably stimulated only the HIV-1 LTR expression, while long exposure stimulated only the HTLV-1 LTR and that their activation is agonized or antagonized by PKC respectively. It was found that TPA induced interaction between the transcriptional factors Sp1 and P53 producing Sp1-p53 complex which strongly interacted with c-Jun only after short exposure to TPA. In addition, TPA treatment highly induced the expression of CREB which attached to the Sp1-p53 complex mainly after a long exposure to TPA. A strong binding of sp1, p53 and CREB proteins with HTLV-1 LTR and strong binding of NF-κB with HIV-1 LTR were observed after long (24 h) and short (6 h) exposures to TPA respectively by Chip assay. These results support the possibility that sp1, p53 and CREB are involved in the TPA induced HTLV-1 LTR expression while TPA activation of HIV-1 LTR seems to be dependent on PKC activity through the NF-κB pathway.
Collapse
|
4
|
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol 2018; 8:2686. [PMID: 29379481 PMCID: PMC5775265 DOI: 10.3389/fmicb.2017.02686] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T-cell leukemia (ATL). One way to address the pathology of the disease lies on conducting research with a molecular approach. In addition to the analysis of ATL-relevant signaling pathways, understanding the regulation of important and relevant transcription factors allows researchers to reach this fundamental objective. HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor, which play significant roles in the cellular transformation and the activation of the host's immune responses. Activating protein-1 (AP-1) transcription factor has been linked to cancer and neoplastic transformation ever since the first representative members of the Jun and Fos gene family were cloned and shown to be cellular homologs of viral oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating transcription factor protein families. Activation of AP-1 transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. AP-1 is also involved in various cellular events including differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1 pathway and its contribution to HTLV-induced cellular transformation.
Collapse
Affiliation(s)
- Hélène Gazon
- Belgium Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Shibata Y, Tokunaga F, Goto E, Komatsu G, Gohda J, Saeki Y, Tanaka K, Takahashi H, Sawasaki T, Inoue S, Oshiumi H, Seya T, Nakano H, Tanaka Y, Iwai K, Inoue JI. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathog 2017; 13:e1006162. [PMID: 28103322 PMCID: PMC5283754 DOI: 10.1371/journal.ppat.1006162] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/31/2017] [Accepted: 01/01/2017] [Indexed: 11/18/2022] Open
Abstract
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.
Collapse
Affiliation(s)
- Yuri Shibata
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Eiji Goto
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ginga Komatsu
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Satoshi Inoue
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Yuetsu Tanaka
- Division of Immunology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Yamaguchi K, Takanashi T, Nasu K, Tamai K, Mochizuki M, Satoh I, Ine S, Sasaki O, Satoh K, Tanaka N, Harigae H, Sugamura K. Xenotransplantation elicits salient tumorigenicity of adult T-cell leukemia-derived cells via aberrant AKT activation. Cancer Sci 2016; 107:638-43. [PMID: 26928911 PMCID: PMC4970830 DOI: 10.1111/cas.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/13/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The transplantation of human cancer cells into immunodeficient NOD/SCID/IL‐2Rγcnull (NOG) mice often causes highly malignant cell populations like cancer stem cells to emerge. Here, by serial transplantation in NOG mice, we established two highly tumorigenic adult T‐cell leukemia‐derived cell lines, ST1‐N6 and TL‐Om1‐N8. When transplanted s.c., these cells formed tumors significantly earlier and from fewer initial cells than their parental lines ST1 and TL‐Om1. We found that protein kinase B (AKT) signaling was upregulated in ST1‐N6 and TL‐Om1‐N8 cells, and that this upregulation was due to the decreased expression of a negative regulator, INPP5D. Furthermore, the introduction of a constitutively active AKT mutant expression vector into ST1 cells augmented the tumorigenicity of the cells, whereas treatment with the AKT inhibitor MK‐2206 attenuated the progression of tumors induced by ST1‐N6 cells. Collectively, our results reveal that the AKT signaling pathway plays a critical role in the malignancy of adult T‐cell leukemia‐derived cells.
Collapse
Affiliation(s)
- Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoka Takanashi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kentaro Nasu
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Tamai
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan.,Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ikuro Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Miyagi Cancer Center, Natori, Japan
| | - Shoji Ine
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Osamu Sasaki
- Division of Hematology, Miyagi Cancer Center, Natori, Japan
| | - Kennichi Satoh
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Nobuyuki Tanaka
- Department of Cancer Science, Tohoku University Graduate School of Medicine, Sendai, Japan.,Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuo Sugamura
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Japan
| |
Collapse
|
7
|
Tanaka Y, Mizuguchi M, Takahashi Y, Fujii H, Tanaka R, Fukushima T, Tomoyose T, Ansari AA, Nakamura M. Human T-cell leukemia virus type-I Tax induces the expression of CD83 on T cells. Retrovirology 2015; 12:56. [PMID: 26129803 PMCID: PMC4487981 DOI: 10.1186/s12977-015-0185-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/21/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83. RESULT We found that CD83 was expressed selectively on Tax1-expressing human CD4(+) T cells in short-term cultured peripheral blood mononuclear cells (PBMCs) isolated from HTLV-I(+) donors, including ATL patients and HTLV-I carriers. HTLV-I-infected T cell lines expressing Tax1 also expressed cell surface CD83 and released soluble CD83. CD83 can be expressed in the JPX-9 cell line by cadmium-mediated Tax1 induction and in Jurkat cells or PBMCs by Tax1 introduction via infection with a recombinant adenovirus carrying the Tax1 gene. The CD83 promoter was activated by Tax1 in an NF-κB-dependent manner. Based on a previous report showing soluble CD83-mediated prostaglandin E2 (PGE2) production from human monocytes in vitro, we tested if PGE2 affected HTLV-I propagation, and found that PGE2 strongly stimulated expression of Tax1 and viral structural molecules. CONCLUSIONS Our results suggest that HTLV-I induces CD83 expression on T cells via Tax1 -mediated NF-κB activation, which may promote HTLV-I infection in vivo.
Collapse
Affiliation(s)
- Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yoshiaki Takahashi
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Hideki Fujii
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa, 903-0215, Japan.
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Haematology, Rheumatology (Second Department of Internal Medicine), Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Aftab A Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Kobayashi S, Nakano K, Watanabe E, Ishigaki T, Ohno N, Yuji K, Oyaizu N, Asanuma S, Yamagishi M, Yamochi T, Watanabe N, Tojo A, Watanabe T, Uchimaru K. CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-I-infected cells in adult T-cell leukemia/lymphoma. Clin Cancer Res 2014; 20:2851-61. [PMID: 24727323 DOI: 10.1158/1078-0432.ccr-13-3169] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cell adhesion molecule 1 (CADM1), initially identified as a tumor suppressor gene, has recently been reported to be ectopically expressed in primary adult T-cell leukemia-lymphoma (ATL) cells. We incorporated CADM1 into flow-cytometric analysis to reveal oncogenic mechanisms in human T-cell lymphotrophic virus type I (HTLV-I) infection by purifying cells from the intermediate stages of ATL development. EXPERIMENTAL DESIGN We isolated CADM1- and CD7-expressing peripheral blood mononuclear cells of asymptomatic carriers and ATLs using multicolor flow cytometry. Fluorescence-activated cell sorted (FACS) subpopulations were subjected to clonal expansion and gene expression analysis. RESULTS HTLV-I-infected cells were efficiently enriched in CADM1(+) subpopulations (D, CADM1(pos)CD7(dim) and N, CADM1(pos)CD7(neg)). Clonally expanding cells were detected exclusively in these subpopulations in asymptomatic carriers with high proviral load, suggesting that the appearance of D and N could be a surrogate marker of progression from asymptomatic carrier to early ATL. Further disease progression was accompanied by an increase in N with a reciprocal decrease in D, indicating clonal evolution from D to N. The gene expression profiles of D and N in asymptomatic carriers showed similarities to those of indolent ATLs, suggesting that these subpopulations represent premalignant cells. This is further supported by the molecular hallmarks of ATL, that is, drastic downregulation of miR-31 and upregulation of abnormal Helios transcripts. CONCLUSION The CADM1 versus CD7 plot accurately reflects disease progression in HTLV-I infection, and CADM1(+) cells with downregulated CD7 in asymptomatic carriers have common properties with those in indolent ATLs.
Collapse
Affiliation(s)
- Seiichiro Kobayashi
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazumi Nakano
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishigaki
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Ohno
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koichiro Yuji
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Oyaizu
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Satomi Asanuma
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Yamagishi
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadanori Yamochi
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Nobukazu Watanabe
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, JapanAuthors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Authors' affiliations: Division of Molecular Therapy; Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy; Department of Hematology/Oncology, Research Hospital; Clinical Laboratory, Research Hospital, Institute of Medical Science; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Romanelli MG, Diani E, Bergamo E, Casoli C, Ciminale V, Bex F, Bertazzoni U. Highlights on distinctive structural and functional properties of HTLV Tax proteins. Front Microbiol 2013; 4:271. [PMID: 24058363 PMCID: PMC3766827 DOI: 10.3389/fmicb.2013.00271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.
Collapse
|
10
|
Kobayashi S, Tian Y, Ohno N, Yuji K, Ishigaki T, Isobe M, Tsuda M, Oyaizu N, Watanabe E, Watanabe N, Tani K, Tojo A, Uchimaru K. The CD3 versus CD7 plot in multicolor flow cytometry reflects progression of disease stage in patients infected with HTLV-I. PLoS One 2013; 8:e53728. [PMID: 23349737 PMCID: PMC3551918 DOI: 10.1371/journal.pone.0053728] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/04/2012] [Indexed: 12/15/2022] Open
Abstract
PURPOSE In a recent study to purify adult T-cell leukemia-lymphoma (ATL) cells from acute-type patients by flow cytometry, three subpopulations were observed in a CD3 versus CD7 plot (H: CD3(high)CD7(high); D: CD3(dim)CD7(dim); L: CD3(dim)CD7(low)). The majority of leukemia cells were enriched in the L subpopulation and the same clone was included in the D and L subpopulations, suggesting clonal evolution. In this study, we analyzed patients with indolent-type ATL and human T-cell leukemia virus type I (HTLV-I) asymptomatic carriers (ACs) to see whether the CD3 versus CD7 profile reflected progression in the properties of HTLV-I-infected cells. EXPERIMENTAL DESIGN Using peripheral blood mononuclear cells from patient samples, we performed multi-color flow cytometry. Cells that underwent fluorescence-activated cell sorting were subjected to molecular analyses, including inverse long PCR. RESULTS In the D(%) versus L(%) plot, patient data could largely be categorized into three groups (Group 1: AC; Group 2: smoldering- and chronic-type ATL; and Group 3: acute-type ATL). Some exceptions, however, were noted (e.g., ACs in Group 2). In the follow-up of some patients, clinical disease progression correlated well with the CD3 versus CD7 profile. In clonality analysis, we clearly detected a major clone in the D and L subpopulations in ATL cases and, intriguingly, in some ACs in Group 2. CONCLUSION We propose that the CD3 versus CD7 plot reflects progression of disease stage in patients infected with HTLV-I. The CD3 versus CD7 profile will be a new indicator, along with high proviral load, for HTLV-I ACs in forecasting disease progression.
Collapse
Affiliation(s)
- Seiichiro Kobayashi
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yamin Tian
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Ohno
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichiro Yuji
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ishigaki
- Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mayuko Tsuda
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Oyaizu
- Clinical Laboratory, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eri Watanabe
- Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nobukazu Watanabe
- Laboratory of Diagnostic Medicine, Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenzaburo Tani
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Kozako T, Arima N, Yoshimitsu M, Honda SI, Soeda S. Liposomes and nanotechnology in drug development: focus on oncotargets. Int J Nanomedicine 2012; 7:4943-51. [PMID: 23028222 PMCID: PMC3446859 DOI: 10.2147/ijn.s30726] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanotechnology is the development of an engineered device at the atomic, molecular, and macromolecular level in the nanometer range. Advances in nanotechnology have proven beneficial in therapeutic fields such as drug-delivery and gene/protein delivery. Antigen delivery systems are important for inducing and modifying immune responses. In cellular immunity, cytotoxic T lymphocytes (CTLs) are important in the host defense against tumors. Key to the development of CTL-inducible vaccines is the ability to deliver antigens to antigen-presenting cells efficiently and to induce the subsequent activation of T cell-mediated immunity without adjuvants, as they can induce excessive inflammation leading to systemic febrile disease. Since expression and cloning methods for tumor-associated antigens have been reported, cancer vaccines that induce effective cell immunity may be promising therapeutic candidates, but Th2 cells are undesirable for use in cancer immunotherapy. Peptide vaccines have immunological and economic advantages as cancer vaccines because CTL epitope peptides from tumor-associated antigens have high antigen-specificity. However, cancer vaccines have had limited effectiveness in clinical responses due to the ability of cancer cells to “escape” from cancer immunity and a low efficiency of antigen-specific CTL induction due to immunogenic-free synthetic peptides. In contrast, carbohydrate-decorated particles such as carbohydrate-coated liposomes with encapsulated antigens might be more suitable as antigen delivery vehicles to antigen-presenting cells. Oligomannose-coated liposomes (OML) can eliminate established tumors in mouse cancer models. In addition, OMLs with an encased antigen can induce antigen-specific CTLs from peripheral blood mononuclear cells obtained from patients. Feasibility studies of OML-based vaccines have revealed their potential for clinical use as vaccines for diseases where CTLs act as effector cells. Furthermore, use of the hepatitis B core particle, in which tumor-antigen epitopes are set, has consistently been shown to induce strong CTL responses without the use of an adjuvant. Thus, nanoparticles may provide a new prophylactic strategy for infectious disease and therapeutic approaches for cancer via the induction of T-cell immunity.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
12
|
Abou-Kandil A, Chamias R, Huleihel M, Godbey WT, Aboud M. Differential role of PKC-induced c-Jun in HTLV-1 LTR activation by 12-O-tetradecanoylphorbol-13-acetate in different human T-cell lines. PLoS One 2012; 7:e29934. [PMID: 22299029 PMCID: PMC3267723 DOI: 10.1371/journal.pone.0029934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/07/2011] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that TPA activates HTLV-1 LTR in Jurkat T-cells by inducing the binding of Sp1-p53 complex to the Sp1 site residing within the Ets responsive region 1 (ERR-1) of the LTR and that this activation is inhibited by PKCalpha and PKCepsilon. However, in H9 T-cells TPA has been noted to activate the LTR in two consecutive stages. The first stage is activation is mediated by PKCetta and requires the three 21 bp TRE repeats. The second activation mode resembles that of Jurkat cells, except that it is inhibited by PKCdelta. The present study revealed that the first LTR activation in H9 cells resulted from PKCetta-induced elevation of non-phosphorylated c-Jun which bound to the AP-1 site residing within each TRE. In contrast, this TRE-dependent activation did not occur in Jurkat cells, since there was no elevation of non-phosphorylated c-Jun in these cells. However, we found that PKCalpha and PKCepsilon, in Jurkat cells, and PKCetta and PKCdelta, in H9 cells, increased the level of phosphorylated c-Jun that interacted with the Sp1-p53 complex. This interaction prevented the Sp1-p53 binding to ERR-1 and blocked, thereby, the ERR-1-mediated LTR activation. Therefore, this PKC-inhibited LTR activation started in both cell types after depletion of the relevant PKCs by their downregulation. In view of these variable activating mechanisms we assume that there might be additional undiscovered yet modes of HTLV-1 LTR activation which vary in different cell types. Moreover, in line with this presumption we speculate that in HTLV-1 carriers the LTR of the latent provirus may also be reactivated by different mechanisms that vary between its different host T-lymphocyte subclones. Since this reactivation may initiate the ATL process, understanding of these mechanisms is essential for establishing strategies to block the possibility of reactivating the latent virus as preventive means for ATL development in carriers.
Collapse
Affiliation(s)
- Ammar Abou-Kandil
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | | | | | | | |
Collapse
|
13
|
Shibata Y, Tanaka Y, Gohda J, Inoue JI. Activation of the IκB kinase complex by HTLV-1 Tax requires cytosolic factors involved in Tax-induced polyubiquitination. J Biochem 2011; 150:679-86. [PMID: 21862596 DOI: 10.1093/jb/mvr106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activation of NF-κB by human T cell leukaemia virus type 1 Tax is thought to be crucial in T-cell transformation and the onset of adult T cell leukaemia. Tax activates NF-κB through activation of the IκB kinase (IKK) complex, similar to cytokine-induced NF-κB activation, which involves active signalling complex formation using polyubiquitin chains as a platform. Although polyubiquitination of Tax was reported to be required for IKK activation, most studies have been performed using intact cells, in which secondary NF-κB activation can be induced by various cytokines that are secreted due to Tax-mediated primary NF-κB activation. Therefore, a cell-free assay system, in which IKK can be activated by adding highly purified recombinant Tax to cytosolic extract, was used to analyse Tax-induced IKK activation. In contrast to the cytosolic extract, the purified IKK complex was not activated by Tax, whereas, it was efficiently activated by MEKK1, that does not require polyubiquitination to activate IKK. Moreover, Tax-induced IKK activation was blocked when the cytosolic extract was mixed with either lysine-free, methylated or K63R ubiquitin. These results obtained through our cell-free assay suggest that K63-linked polyubiquitination is critical, but linear polyubiquitination is dispensable or insufficient for Tax-induced IKK activation.
Collapse
Affiliation(s)
- Yuri Shibata
- Department of Cancer Biology, Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
14
|
Kozako T, Hirata S, Shimizu Y, Satoh Y, Yoshimitsu M, White Y, Lemonnier F, Shimeno H, Soeda S, Arima N. Oligomannose-coated liposomes efficiently induce human T-cell leukemia virus-1-specific cytotoxic T lymphocytes without adjuvant. FEBS J 2011; 278:1358-66. [PMID: 21332943 DOI: 10.1111/j.1742-4658.2011.08055.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human T-cell leukemia virus-1 (HTLV-1) causes adult T-cell leukemia/lymphoma, which is an aggressive peripheral T-cell neoplasm. Insufficient T-cell response to HTLV-1 is a potential risk factor in adult T-cell leukemia/lymphoma. Efficient induction of antigen-specific cytotoxic T lymphocytes is important for immunological suppression of virus-infected cell proliferation and oncogenesis, but efficient induction of antigen-specific cytotoxic T lymphocytes has evaded strategies utilizing poorly immunogenic free synthetic peptides. Here, we examined the efficient induction of an HTLV-1-specific CD8+ T-cell response by oligomannose-coated liposomes (OMLs) encapsulating the human leukocyte antigen (HLA)-A*0201-restricted HTLV-1 Tax-epitope (OML/Tax). Immunization of HLA-A*0201 transgenic mice with OML/Tax induced an HTLV-1-specific gamma-interferon reaction, whereas immunization with epitope peptide alone induced no reaction. Upon exposure of dendritic cells to OML/Tax, the levels of CD86, major histocompatibility complex class I, HLA-A02 and major histocompatibility complex class II expression were increased. In addition, our results showed that HTLV-1-specific CD8+ T cells can be efficiently induced by OML/Tax from HTLV-1 carriers compared with epitope peptide alone, and these HTLV-1-specific CD8+ T cells were able to lyse cells presenting the peptide. These results suggest that OML/Tax is capable of inducing antigen-specific cellular immune responses without adjuvants and may be useful as an effective vaccine carrier for prophylaxis in tumors and infectious diseases by substituting the epitope peptide.
Collapse
Affiliation(s)
- Tomohiro Kozako
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|