1
|
Tai NC, Shinmyo Y, Kawasaki H. Astrocyte diversity in the ferret cerebrum revealed with astrocyte-specific genetic manipulation. Glia 2024; 72:1862-1873. [PMID: 38884631 DOI: 10.1002/glia.24587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Astrocytes in the cerebrum play important roles such as the regulation of synaptic functions, homeostasis, water transport, and the blood-brain barrier. It has been proposed that astrocytes in the cerebrum acquired diversity and developed functionally during evolution. Here, we show that like human astrocytes, ferret astrocytes in the cerebrum exhibit various morphological subtypes which mice do not have. We found that layer 1 of the ferret cerebrum contained not only protoplasmic astrocytes but also pial interlaminar astrocytes and subpial interlaminar astrocytes. Morphologically polarized astrocytes, which have a long unbranched process, were found in layer 6. Like human white matter, ferret white matter exhibited four subtypes of astrocytes. Furthermore, our quantification showed that ferret astrocytes had a larger territory size and a longer radius length than mouse astrocytes. Thus, our results indicate that, similar to the human cerebrum, the ferret cerebrum has a well-developed diversity of astrocytes. Ferrets should be useful for investigating the molecular and cellular mechanisms leading to astrocyte diversity, the functions of each astrocyte subtype and the involvement of different astrocyte subtypes in various neurological diseases.
Collapse
Affiliation(s)
- Nguyen Chi Tai
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Neurophysiology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
2
|
Garcia KE, Wang X, Santiago SE, Bakshi S, Barnes AP, Kroenke CD. Longitudinal MRI of the developing ferret brain reveals regional variations in timing and rate of growth. Cereb Cortex 2024; 34:bhae172. [PMID: 38679479 PMCID: PMC11056283 DOI: 10.1093/cercor/bhae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Normative ferret brain development was characterized using magnetic resonance imaging. Brain growth was longitudinally monitored in 10 ferrets (equal numbers of males and females) from postnatal day 8 (P8) through P38 in 6-d increments. Template T2-weighted images were constructed at each age, and these were manually segmented into 12 to 14 brain regions. A logistic growth model was used to fit data from whole brain volumes and 8 of the individual regions in both males and females. More protracted growth was found in males, which results in larger brains; however, sex differences were not apparent when results were corrected for body weight. Additionally, surface models of the developing cortical plate were registered to one another using the anatomically-constrained Multimodal Surface Matching algorithm. This, in turn, enabled local logistic growth parameters to be mapped across the cortical surface. A close similarity was observed between surface area expansion timing and previous reports of the transverse neurogenic gradient in ferrets. Regional variation in the extent of surface area expansion and the maximum expansion rate was also revealed. This characterization of normative brain growth over the period of cerebral cortex folding may serve as a reference for ferret studies of brain development.
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Evansville, IN 47715, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Xiaojie Wang
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Sarah E Santiago
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Stuti Bakshi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
| | - Anthony P Barnes
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, United States
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, United States
- Oregon Health and Science Advanced Imaging Research Center, Portland, OR 97239, United States
| |
Collapse
|
3
|
Kawasaki H. Investigation of the mechanisms underlying the development and evolution of folds of the cerebrum using gyrencephalic ferrets. J Comp Neurol 2024; 532:e25615. [PMID: 38587214 DOI: 10.1002/cne.25615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
The mammalian cerebrum has changed substantially during evolution, characterized by increases in neurons and glial cells and by the expansion and folding of the cerebrum. While these evolutionary alterations are thought to be crucial for acquiring higher cognitive functions, the molecular mechanisms underlying the development and evolution of the mammalian cerebrum remain only partially understood. This is, in part, because of the difficulty in analyzing these mechanisms using mice only. To overcome this limitation, genetic manipulation techniques for the cerebrum of gyrencephalic carnivore ferrets have been developed. Furthermore, successful gene knockout in the ferret cerebrum has been accomplished through the application of the CRISPR/Cas9 system. This review mainly highlights recent research conducted using gyrencephalic carnivore ferrets to investigate the mechanisms underlying the development and evolution of cortical folds.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Wang S, Saito K, Kawasaki H, Holland MA. Orchestrated neuronal migration and cortical folding: A computational and experimental study. PLoS Comput Biol 2022; 18:e1010190. [PMID: 35709293 PMCID: PMC9258886 DOI: 10.1371/journal.pcbi.1010190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/06/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Brain development involves precisely orchestrated genetic, biochemical, and mechanical events. At the cellular level, neuronal proliferation in the innermost zone of the brain followed by migration towards the outermost layer results in a rapid increase in brain surface area, outpacing the volumetric growth of the brain, and forming the highly folded cortex. This work aims to provide mechanistic insights into the process of brain development and cortical folding using a biomechanical model that couples cell division and migration with volumetric growth. Unlike phenomenological growth models, our model tracks the spatio-temporal development of cohorts of neurons born at different times, with each cohort modeled separately as an advection-diffusion process and the total cell density determining the extent of volume growth. We numerically implement our model in Abaqus/Standard (2020) by writing user-defined element (UEL) subroutines. For model calibration, we apply in utero electroporation (IUE) to ferret brains to visualize and track cohorts of neurons born at different stages of embryonic development. Our calibrated simulations of cortical folding align qualitatively with the ferret experiments. We have made our experimental data and finite-element implementation available online to offer other researchers a modeling platform for future study of neurological disorders associated with atypical neurodevelopment and cortical malformations. Brain development and cortical folding is a highly dynamic process that results from the interaction between gene expression, cellular mechanisms, and mechanical forces. Here, we expand on existing mathematical models of brain development and cortical folding to capture the behavior of multiple different subpopulations of neurons. By calibrating our biomechanical model to our novel experiments on ferrets, we can track the distribution of neurons over time and observe how the brain grows and develops its characteristic folds. Our calibrated model captures interactions between cell behavior and tissue deformation and offers more detailed information about the orchestrated migration of neuronal subpopulations. This work offers new mechanistic insights into brain development and opens the door to future investigations of atypical brain development caused by disrupted neuronal activities, particularly those alterations associated with injury, exposure, or treatment at a specific location or time during development. Finally, our experimental data and numerical implementations are provided as a resource online for the use of other researchers.
Collapse
Affiliation(s)
- Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Maria A. Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
5
|
Shinmyo Y, Hamabe-Horiike T, Saito K, Kawasaki H. Investigation of the Mechanisms Underlying the Development and Evolution of the Cerebral Cortex Using Gyrencephalic Ferrets. Front Cell Dev Biol 2022; 10:847159. [PMID: 35386196 PMCID: PMC8977464 DOI: 10.3389/fcell.2022.847159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex has changed significantly during evolution. As a result of the increase in the number of neurons and glial cells in the cerebral cortex, its size has markedly expanded. Moreover, folds, called gyri and sulci, appeared on its surface, and its neuronal circuits have become much more complicated. Although these changes during evolution are considered to have been crucial for the acquisition of higher brain functions, the mechanisms underlying the development and evolution of the cerebral cortex of mammals are still unclear. This is, at least partially, because it is difficult to investigate these mechanisms using mice only. Therefore, genetic manipulation techniques for the cerebral cortex of gyrencephalic carnivore ferrets were developed recently. Furthermore, gene knockout was achieved in the ferret cerebral cortex using the CRISPR/Cas9 system. These techniques enabled molecular investigations using the ferret cerebral cortex. In this review, we will summarize recent findings regarding the mechanisms underlying the development and evolution of the mammalian cerebral cortex, mainly focusing on research using ferrets.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshihide Hamabe-Horiike
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
6
|
Darayi M, Hoffman ME, Sayut J, Wang S, Demirci N, Consolini J, Holland MA. Computational models of cortical folding: A review of common approaches. J Biomech 2021; 139:110851. [PMID: 34802706 DOI: 10.1016/j.jbiomech.2021.110851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
The process of gyrification, by which the brain develops the intricate pattern of gyral hills and sulcal valleys, is the result of interactions between biological and mechanical processes during brain development. Researchers have developed a vast array of computational models in order to investigate cortical folding. This review aims to summarize these studies, focusing on five essential elements of the brain that affect development and gyrification and how they are represented in computational models: (i) the constraints of skull, meninges, and cerebrospinal fluid; (ii) heterogeneity of cortical layers and regions; (iii) anisotropic behavior of subcortical fiber tracts; (iv) material properties of brain tissue; and (v) the complex geometry of the brain. Finally, we highlight areas of need for future simulations of brain development.
Collapse
Affiliation(s)
- Mohsen Darayi
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Sayut
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shuolun Wang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jack Consolini
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Kawasaki H. [Investigation of the Mechanisms Underlying Development and Diseases of the Cerebral Cortex Using Mice and Ferrets]. YAKUGAKU ZASSHI 2021; 141:349-357. [PMID: 33642503 DOI: 10.1248/yakushi.20-00198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folds of the cerebral cortex, which are called gyri and sulci, are one of the most prominent features of the mammalian brain. However, the mechanisms underlying the development and malformation of cortical folds are largely unknown, mainly because they are difficult to investigate in mice, whose brain do not have cortical folds. To investigate the mechanisms underlying the development and malformation of cortical folds, we developed a genetic manipulation technique for the cerebral cortex of gyrencephalic carnivore ferrets. Genes-of-interest can be expressed in the ferret cortex rapidly and efficiently. We also demonstrated that genes-of-interest can be knocked out in the ferret cortex by combining in utero electroporation and the CRISPR/Cas9 system. Using our technique, we found that fibroblast growth factor (FGF) signaling and sonic hedgehog (Shh) signaling are crucial for cortical folding. In addition, we found that FGF signaling and Shh signaling preferentially increased outer radial glial cells and the thickness of upper layers of the cerebral cortex. Furthermore, over-activation of FGF signaling and Shh signaling resulted in polymicrogyria. Our findings provide in vivo data about the mechanisms of cortical folding in gyrencephalic mammals. Our technique for the ferret cerebral cortex should be useful for investigating the mechanisms underlying the development and diseases of the cerebral cortex that cannot be investigated using mice.
Collapse
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medicine, Kanazawa University
| |
Collapse
|
8
|
Maeyama H, Shinmyo Y, Kawasaki H. The expression of aristaless-related homeobox in neural progenitors of gyrencephalic carnivore ferrets. Biochem Biophys Rep 2021; 26:100970. [PMID: 33732905 PMCID: PMC7941032 DOI: 10.1016/j.bbrep.2021.100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022] Open
Abstract
Aristaless-related homeobox (ARX) has important functions in the development of various organs including the brain. Mutations of the human ARX gene have been associated with malformations of the cerebral cortex such as microcephaly and lissencephaly. Although the expression patterns of ARX in the lissencephalic cerebral cortex of mice have been intensively investigated, those in expanded gyrencephalic brains remained unclear. Here, we show the expression patterns of ARX in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that ARX was expressed not only in intermediate progenitor (IP) cells but also in outer radial glial (oRG) cells, which are neural progenitors preferentially observed in the gyrencephalic cerebral cortex. We found that the majority of ARX-positive oRG cells expressed the proliferating cell marker Ki-67. These results may indicate that ARX in oRG cells mediates the expansion of the gyrencephalic cerebral cortex during development and evolution. We investigated the distribution of ARX in the germinal zone of the ferret cerebrum. ARX was abundantly expressed in outer radial glial (oRG) cells. Most of the ARX-positive oRG cells were positive for the proliferation marker Ki-67.
Collapse
Affiliation(s)
- Hiroki Maeyama
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
9
|
Matsumoto N, Kobayashi N, Uda N, Hirota M, Kawasaki H. Pathophysiological analyses of leptomeningeal heterotopia using gyrencephalic mammals. Hum Mol Genet 2019; 27:985-991. [PMID: 29325060 DOI: 10.1093/hmg/ddy014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 12/16/2022] Open
Abstract
Leptomeningeal glioneuronal heterotopia (LGH) is a focal malformation of the cerebral cortex and frequently found in patients with thanatophoric dysplasia (TD). The pathophysiological mechanisms underlying LGH formation are still largely unclear because of difficulties in obtaining brain samples from human TD patients. Recently, we established a new animal model for analysing cortical malformations of human TD by utilizing our genetic manipulation technique for gyrencephalic carnivore ferrets. Here we investigated the pathophysiological mechanisms underlying the formation of LGH using our TD ferrets. We found that LGH was formed during corticogenesis in TD ferrets. Interestingly, we rarely found Ki-67-positive and phospho-histone H3-positive cells in LGH, suggesting that LGH formation does not involve cell proliferation. We uncovered that vimentin-positive radial glial fibers and doublecortin-positive migrating neurons were accumulated in LGH. This result may indicate that preferential cell migration into LGH underlies LGH formation. Our findings provide novel mechanistic insights into the pathogenesis of LGH in TD.
Collapse
Affiliation(s)
- Naoyuki Matsumoto
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Naoki Kobayashi
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.,Medical Research Training Program, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Natsu Uda
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.,Medical Research Training Program, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Miwako Hirota
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.,Medical Research Training Program, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
10
|
Saito K, Mizuguchi K, Horiike T, Dinh Duong TA, Shinmyo Y, Kawasaki H. Characterization of the Inner and Outer Fiber Layers in the Developing Cerebral Cortex of Gyrencephalic Ferrets. Cereb Cortex 2018; 29:4303-4311. [DOI: 10.1093/cercor/bhy312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
Abstract
Changes in the cerebral cortex of mammals during evolution have been of great interest. Ferrets, monkeys, and humans have more developed cerebral cortices compared with mice. Although the features of progenitors in the developing cortices of these animals have been intensively investigated, those of the fiber layers are still largely elusive. By taking the advantage of our in utero electroporation technique for ferrets, here we systematically investigated the cellular origins and projection patterns of axonal fibers in the developing ferret cortex. We found that ferrets have 2 fiber layers in the developing cerebral cortex, as is the case in monkeys and humans. Axonal fibers in the inner fiber layer projected contralaterally and subcortically, whereas those in the outer fiber layer sent axons to neighboring cortical areas. Furthermore, we performed similar experiments using mice and found unexpected similarities between ferrets and mice. Our results shed light on the cellular origins, the projection patterns, the developmental processes, and the evolution of fiber layers in mammalian brains.
Collapse
Affiliation(s)
- Kengo Saito
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Keishi Mizuguchi
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Toshihide Horiike
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Tung Anh Dinh Duong
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan
| |
Collapse
|
11
|
Kawasaki H. Molecular Investigations of the Development and Diseases of Cerebral Cortex Folding using Gyrencephalic Mammal Ferrets. Biol Pharm Bull 2018; 41:1324-1329. [DOI: 10.1248/bpb.b18-00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
12
|
Distribution and Morphological Features of Microglia in the Developing Cerebral Cortex of Gyrencephalic Mammals. Neurochem Res 2018; 43:1075-1085. [PMID: 29616442 DOI: 10.1007/s11064-018-2520-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/23/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.
Collapse
|