1
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Cascio G, Aguirre KN, Church KP, Hughes RO, Nease LA, Delclaux I, Davis HJ, Piskounova E. Transcriptional Isoforms of NAD + kinase regulate oxidative stress resistance and melanoma metastasis. Redox Biol 2024; 76:103289. [PMID: 39167913 PMCID: PMC11381905 DOI: 10.1016/j.redox.2024.103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasizing cancer cells encounter a multitude of stresses throughout the metastatic cascade. Oxidative stress is known to be a major barrier for metastatic colonization, such that metastasizing cancer cells must rewire their metabolic pathways to increase their antioxidant capacity. NADPH is essential for regeneration of cellular antioxidants and several NADPH-regenerating pathways have been shown to play a role in metastasis. We have found that metastatic melanoma cells have increased levels of both NADPH and NADP+ suggesting increased de novo biosynthesis of NADP+. De novo biosynthesis of NADP+ occurs through a single enzymatic reaction catalyzed by NAD+ kinase (NADK). Here we show that different NADK isoforms are differentially expressed in metastatic melanoma cells, with Isoform 3 being specifically upregulated in metastasis. We find that Isoform 3 is more potent in expanding the NADP(H) pools, increasing oxidative stress resistance and promoting metastatic colonization compared to Isoform 1. We have found that Isoform 3 is transcriptionally upregulated by oxidative stress through the action of NRF2. Together, our work presents a previously uncharacterized role of NADK isoforms in oxidative stress resistance and metastasis and suggests that NADK Isoform 3 is a potential therapeutic target in metastatic disease.
Collapse
Affiliation(s)
- Graciela Cascio
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA
| | - Kelsey N Aguirre
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA
| | - Kellsey P Church
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA
| | - Riley O Hughes
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Leona A Nease
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA
| | - Ines Delclaux
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA
| | - Hannah J Davis
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA
| | - Elena Piskounova
- Sandra and Edward Meyer Cancer Center, 413 East 69th Street, Belfer Research Building, Weill Cornell Medicine, 10021, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Clément DA, Gelin M, Leseigneur C, Huteau V, Mondange L, Pons JL, Dussurget O, Lionne C, Labesse G, Pochet S. Synthesis and structure-activity relationship studies of original cyclic diadenosine derivatives as nanomolar inhibitors of NAD kinase from pathogenic bacteria. Eur J Med Chem 2023; 246:114941. [PMID: 36455355 DOI: 10.1016/j.ejmech.2022.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Nicotinamide adenine dinucleotide kinases (NAD kinases) are essential and ubiquitous enzymes involved in the production of NADP(H) which is an essential cofactor in many metabolic pathways. Targeting NAD kinase (NADK), a rate limiting enzyme of NADP biosynthesis pathway, represents a new promising approach to treat bacterial infections. Previously, we have produced the first NADK inhibitor active against staphylococcal infection. From this linear di-adenosine derivative, namely NKI1, we designed macrocyclic analogues. Here, we describe the synthesis and evaluation of an original series of cyclic diadenosine derivatives as NADK inhibitors of two pathogenic bacteria, Listeria monocytogenes and Staphylococcus aureus. The nature and length of the link between the two adenosine units were examined leading to sub-micromolar inhibitors of NADK1 from L. monocytogenes, including its most potent in vitro inhibitor reported so far (with a 300-fold improvement compared to NKI1).
Collapse
Affiliation(s)
- David A Clément
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie et Biocatalyse, F-75015, Paris, France
| | - Muriel Gelin
- Centre de Biologie Structurale (CBS), CNRS UMR5048, INSERM U1054, Université de Montpellier, 34090, Montpellier, France
| | - Clarisse Leseigneur
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, F-75015, Paris, France
| | - Valérie Huteau
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie et Biocatalyse, F-75015, Paris, France
| | - Lou Mondange
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, F-75015, Paris, France
| | - Jean-Luc Pons
- Centre de Biologie Structurale (CBS), CNRS UMR5048, INSERM U1054, Université de Montpellier, 34090, Montpellier, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, F-75015, Paris, France
| | - Corinne Lionne
- Centre de Biologie Structurale (CBS), CNRS UMR5048, INSERM U1054, Université de Montpellier, 34090, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), CNRS UMR5048, INSERM U1054, Université de Montpellier, 34090, Montpellier, France.
| | - Sylvie Pochet
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Unité de Chimie et Biocatalyse, F-75015, Paris, France.
| |
Collapse
|
4
|
Oka SI, Titus AS, Zablocki D, Sadoshima J. Molecular properties and regulation of NAD + kinase (NADK). Redox Biol 2022; 59:102561. [PMID: 36512915 PMCID: PMC9763689 DOI: 10.1016/j.redox.2022.102561] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) kinase (NADK) phosphorylates NAD+, thereby producing nicotinamide adenine dinucleotide phosphate (NADP). Both NADK genes and the NADP(H)-producing mechanism are evolutionarily conserved among archaea, bacteria, plants and mammals. In mammals, NADK is activated by phosphorylation and protein-protein interaction. Recent studies conducted using genetically altered models validate the essential role of NADK in cellular redox homeostasis and metabolism in multicellular organisms. Here, we describe the evolutionary conservation, molecular properties, and signaling mechanisms and discuss the pathophysiological significance of NADK.
Collapse
Affiliation(s)
| | | | | | - Junichi Sadoshima
- Rutgers New Jersey Medical School Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, Newark, NJ, 07101, USA.
| |
Collapse
|
5
|
The Power of Biocatalysts for Highly Selective and Efficient Phosphorylation Reactions. Catalysts 2022. [DOI: 10.3390/catal12111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reactions involving the transfer of phosphorus-containing groups are of key importance for maintaining life, from biological cells, tissues and organs to plants, animals, humans, ecosystems and the whole planet earth. The sustainable utilization of the nonrenewable element phosphorus is of key importance for a balanced phosphorus cycle. Significant advances have been achieved in highly selective and efficient biocatalytic phosphorylation reactions, fundamental and applied aspects of phosphorylation biocatalysts, novel phosphorylation biocatalysts, discovery methodologies and tools, analytical and synthetic applications, useful phosphoryl donors and systems for their regeneration, reaction engineering, product recovery and purification. Biocatalytic phosphorylation reactions with complete conversion therefore provide an excellent reaction platform for valuable analytical and synthetic applications.
Collapse
|
6
|
NADPH and Mitochondrial Quality Control as Targets for a Circadian-Based Fasting and Exercise Therapy for the Treatment of Parkinson's Disease. Cells 2022; 11:cells11152416. [PMID: 35954260 PMCID: PMC9367803 DOI: 10.3390/cells11152416] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dysfunctional mitochondrial quality control (MQC) is implicated in the pathogenesis of Parkinson's disease (PD). The improper selection of mitochondria for mitophagy increases reactive oxygen species (ROS) levels and lowers ATP levels. The downstream effects include oxidative damage, failure to maintain proteostasis and ion gradients, and decreased NAD+ and NADPH levels, resulting in insufficient energy metabolism and neurotransmitter synthesis. A ketosis-based metabolic therapy that increases the levels of (R)-3-hydroxybutyrate (BHB) may reverse the dysfunctional MQC by partially replacing glucose as an energy source, by stimulating mitophagy, and by decreasing inflammation. Fasting can potentially raise cytoplasmic NADPH levels by increasing the mitochondrial export and cytoplasmic metabolism of ketone body-derived citrate that increases flux through isocitrate dehydrogenase 1 (IDH1). NADPH is an essential cofactor for nitric oxide synthase, and the nitric oxide synthesized can diffuse into the mitochondrial matrix and react with electron transport chain-synthesized superoxide to form peroxynitrite. Excessive superoxide and peroxynitrite production can cause the opening of the mitochondrial permeability transition pore (mPTP) to depolarize the mitochondria and activate PINK1-dependent mitophagy. Both fasting and exercise increase ketogenesis and increase the cellular NAD+/NADH ratio, both of which are beneficial for neuronal metabolism. In addition, both fasting and exercise engage the adaptive cellular stress response signaling pathways that protect neurons against the oxidative and proteotoxic stress implicated in PD. Here, we discuss how intermittent fasting from the evening meal through to the next-day lunch together with morning exercise, when circadian NAD+/NADH is most oxidized, circadian NADP+/NADPH is most reduced, and circadian mitophagy gene expression is high, may slow the progression of PD.
Collapse
|
7
|
Inhibition of NAD kinase elevates the hepatic NAD+ pool and alleviates acetaminophen-induced acute liver injury in mice. Biochem Biophys Res Commun 2022; 612:70-76. [DOI: 10.1016/j.bbrc.2022.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022]
|
8
|
MURATA K, KAWAI S, HASHIMOTO W. Bacteria with a mouth: Discovery and new insights into cell surface structure and macromolecule transport. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:529-552. [PMID: 36504195 PMCID: PMC9751261 DOI: 10.2183/pjab.98.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
A bacterium with a "mouth"-like pit structure isolated for the first time in the history of microbiology was a Gram-negative rod, containing glycosphingolipids in the cell envelope, and named Sphingomonas sp. strain A1. The pit was dynamic, with repetitive opening and closing during growth on alginate, and directly included alginate concentrated around the pit, particularly by flagellins, an alginate-binding protein localized on the cell surface. Alginate incorporated into the periplasm was subsequently transferred to the cytoplasm by cooperative interactions of periplasmic solute-binding proteins and an ATP-binding cassette transporter in the cytoplasmic membrane. The mechanisms of assembly, functions, and interactions between the above-mentioned molecules were clarified using structural biology. The pit was transplanted into other strains of sphingomonads, and the pitted recombinant cells were effectively applied to the production of bioethanol, bioremediation for dioxin removal, and other tasks. Studies of the function of the pit shed light on the biological significance of cell surface structures and macromolecule transport in bacteria.
Collapse
Affiliation(s)
| | - Shigeyuki KAWAI
- Research Institute for Bioresource and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Wataru HASHIMOTO
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|