1
|
Kobayashi K, Mita H, Kebukawa Y, Nakagawa K, Kaneko T, Obayashi Y, Sato T, Yokoo T, Minematsu S, Fukuda H, Oguri Y, Yoda I, Yoshida S, Kanda K, Imai E, Yano H, Hashimoto H, Yokobori SI, Yamagishi A. Space Exposure of Amino Acids and Their Precursors during the Tanpopo Mission. ASTROBIOLOGY 2021; 21:1479-1493. [PMID: 34793260 DOI: 10.1089/ast.2021.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Amino acids have been detected in extraterrestrial bodies such as carbonaceous chondrites (CCs), which suggests that extraterrestrial organics could be the source of the first life on Earth, and interplanetary dust particles (IDPs) or micrometeorites (MMs) are promising carriers of extraterrestrial organic carbon. Some amino acids found in CCs are amino acid precursors, but these have not been well characterized. The Tanpopo mission was conducted in Earth orbit from 2015 to 2019, and the stability of glycine (Gly), hydantoin (Hyd), isovaline (Ival), 5-ethyl-5-methylhydantoin (EMHyd), and complex organics formed by proton irradiation from CO, NH3, and H2O (CAW) in space were analyzed by high-performance liquid chromatography and/or gas chromatography/mass spectrometry. The target substances showed a logarithmic decomposition over 1-3 years upon space exposure. Recoveries of Gly and CAW were higher than those of Hyd, Ival, and EMHyd. Ground simulation experiments showed different results: Hyd was more stable than Gly. Solar ultraviolet light was fatal to all organics, and they required protection when carried by IDPs/MMs. Thus, complex amino acid precursors (such as CAW) were possibly more robust than simple precursors during transportation to primitive Earth. The Tanpopo 2 mission is currently being conducted to expose organics to more probable space conditions.
Collapse
Affiliation(s)
- Kensei Kobayashi
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Higashi-ku, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Yoko Kebukawa
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Kazumichi Nakagawa
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Takeo Kaneko
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Yumiko Obayashi
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Tomohito Sato
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Takuya Yokoo
- Department of Chemistry, Yokohama National University, Hodogaya-ku, Yokohama, Japan
| | - Saaya Minematsu
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Higashi-ku, Fukuoka Institute of Technology, Fukuoka, Japan
| | | | | | - Isao Yoda
- Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Satoshi Yoshida
- National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba, Japan
| | - Kazuhiro Kanda
- University of Hyogo, Kamigori-cho, Ako-gun, Hyogo, Japan
| | - Eiichi Imai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Hajime Yano
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Suzuki M, Hattori Y, Sakashita T, Yokota Y, Kobayashi Y, Funayama T. Region-specific irradiation system with heavy-ion microbeam for active individuals of Caenorhabditis elegans. JOURNAL OF RADIATION RESEARCH 2017; 58:881-886. [PMID: 28992248 PMCID: PMC5710645 DOI: 10.1093/jrr/rrx043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Radiation may affect essential functions and behaviors such as locomotion, feeding, learning and memory. Although whole-body irradiation has been shown to reduce motility in the nematode Caenorhabditis elegans, the detailed mechanism responsible for this effect remains unknown. Targeted irradiation of the nerve ring responsible for sensory integration and information processing would allow us to determine whether the reduction of motility following whole-body irradiation reflects effects on the central nervous system or on the muscle cells themselves. We therefore addressed this issue using a collimating microbeam system. However, radiation targeting requires the animal to be immobilized, and previous studies have anesthetized animals to prevent their movement, thus making it impossible to assess their locomotion immediately after irradiation. We developed a method in which the animal was enclosed in a straight, microfluidic channel in a polydimethylsiloxane chip to inhibit free motion during irradiation, thus allowing locomotion to be observed immediately after irradiation. The head region (including the central nervous system), mid region around the intestine and uterus, and tail region were targeted independently. Each region was irradiated with 12 000 carbon ions (12C; 18.3 MeV/u; linear energy transfer = 106.4 keV/μm), corresponding to 500 Gy at a φ20 μm region. Motility was significantly decreased by whole-body irradiation, but not by irradiation of any of the individual regions, including the central nervous system. This suggests that radiation inhibits locomotion by a whole-body mechanism, potentially involving motoneurons and/or body-wall muscle cells, rather than affecting motor control via the central nervous system and the stimulation response.
Collapse
Affiliation(s)
- Michiyo Suzuki
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuya Hattori
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- Present address: Department of Systems and Control Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tetsuya Sakashita
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuichiro Yokota
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Tomoo Funayama
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
3
|
Matsumoto Y, Hamada N, Aoki-Nakano M, Funayama T, Sakashita T, Wada S, Kakizaki T, Kobayashi Y, Furusawa Y. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts. RADIATION PROTECTION DOSIMETRY 2015; 166:152-156. [PMID: 26242975 DOI: 10.1093/rpd/ncv177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV µm(-1)), neon (375 keV µm(-1)) and argon ions (1260 keV µm(-1)) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1-6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan Present Address: Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Mizuho Aoki-Nakano
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tetsuya Sakashita
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Seiichi Wada
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Takehiko Kakizaki
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Gao Y, Xu D, Zhao L, Zhang M, Sun Y. Effects of microgravity on DNA damage response in Caenorhabditis elegans during Shenzhou-8 spaceflight. Int J Radiat Biol 2015; 91:531-9. [PMID: 25965668 DOI: 10.3109/09553002.2015.1043754] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Space radiations and microgravity both could cause DNA damage in cells, but the effects of microgravity on DNA damage response to space radiations are still controversial. MATERIALS AND METHODS A mRNA microarray and microRNA micro- array in dauer larvae of Caenorhabditis elegans (C. elegans) that endured spaceflight environment and space radiations environment during 16.5-day Shenzhou-8 space mission was performed. RESULTS Twice as many transcripts significantly altered in the spaceflight environment than space radiations alone. The majority of alterations were related to protein amino acid dephosphorylation and histidine metabolic and catabolic processes. From about 900 genes related to DNA damage response, 38 differentially expressed genes were extracted; most of them differentially expressed under spaceflight environment but not space radiations, although the identical directions of alteration were observed in both cases. cel-miR-81, cel- miR-82, cel-miR-124 and cel-miR-795 were predicted to regulate DNA damage response through four different anti-correlated genes. CONCLUSIONS Evidence was provided that, in the presence of space radiations, microgravity probably enhanced the DNA damage response in C. elegans by integrating the transcriptome and microRNome.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University , Dalian, Liaoning , P. R. China
| | | | | | | | | |
Collapse
|
5
|
von Neubeck C, Shankaran H, Geniza MJ, Kauer PM, Robinson RJ, Chrisler WB, Sowa MB. Integrated experimental and computational approach to understand the effects of heavy ion radiation on skin homeostasis. Integr Biol (Camb) 2013; 5:1229-43. [DOI: 10.1039/c3ib40071a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Claere von Neubeck
- German Cancer Consortium (DKTK), OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Harish Shankaran
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Matthew J. Geniza
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR, USA
| | - Paula M. Kauer
- Systems Toxicology, Pacific Northwest National Laboratory, P.O. Box 999, MS J4-02, Richland, WA 99352, USA. Fax: +1 509-371-7304; Tel: +1 509-371-6898
| | - R. Joe Robinson
- Systems Toxicology, Pacific Northwest National Laboratory, P.O. Box 999, MS J4-02, Richland, WA 99352, USA. Fax: +1 509-371-7304; Tel: +1 509-371-6898
| | - William B. Chrisler
- Systems Toxicology, Pacific Northwest National Laboratory, P.O. Box 999, MS J4-02, Richland, WA 99352, USA. Fax: +1 509-371-7304; Tel: +1 509-371-6898
| | - Marianne B. Sowa
- Systems Toxicology, Pacific Northwest National Laboratory, P.O. Box 999, MS J4-02, Richland, WA 99352, USA. Fax: +1 509-371-7304; Tel: +1 509-371-6898
| |
Collapse
|
6
|
Spitzer J. Emergence of life from multicomponent mixtures of chemicals: the case for experiments with cycling physicochemical gradients. ASTROBIOLOGY 2013; 13:404-413. [PMID: 23577817 DOI: 10.1089/ast.2012.0924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The emergence of life from planetary multicomponent mixtures of chemicals is arguably the most complicated and least understood natural phenomenon. The fact that living cells are non-equilibrium systems suggests that life can emerge only from non-equilibrium chemical systems. From an astrobiological standpoint, non-equilibrium chemical systems arise naturally when solar irradiation strikes rotating surfaces of habitable planets: the resulting cycling physicochemical gradients persistently drive planetary chemistries toward "embryonic" living systems and an eventual emergence of life. To better understand the factors that lead to the emergence of life, I argue for cycling non-equilibrium experiments with multicomponent chemical systems designed to represent the evolving chemistry of Hadean Earth ("prebiotic soups"). Specifically, I suggest experimentation with chemical engineering simulators of Hadean Earth to observe and analyze (i) the appearances and phase separations of surface active and polymeric materials as precursors of the first "cell envelopes" (membranes) and (ii) the accumulations, commingling, and co-reactivity of chemicals from atmospheric, oceanic, and terrestrial locations.
Collapse
Affiliation(s)
- Jan Spitzer
- R&D Department, MCP Inc., Charlotte, North Carolina 29262, USA.
| |
Collapse
|
7
|
Mutou-Yoshihara Y, Funayama T, Yokota Y, Kobayashi Y. Involvement of bystander effect in suppression of the cytokine production induced by heavy-ion broad beams. Int J Radiat Biol 2011; 88:258-66. [PMID: 22040060 DOI: 10.3109/09553002.2012.636138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Immune cells accumulate in and around cancers and cooperate with each other using specific cytokines to attack the cancer cells. The heavy-ion beams for cancer therapy may stimulate immune cells and affect on the immune system. However, it is still poorly understood how the immune cells are stimulated by ion-beams. Here, we irradiated immune cells using heavy-ion beams and analyzed changes in production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) that are important cytokine for the cancer treatment. MATERIALS AND METHODS The human THP-1 monocytes were differentiated into macrophages and then irradiated using carbon-ion broad-beams (108 keV μm(-1)). To examine the bystander response after heavy-ion irradiation, a very small fraction (approx. 0.45%) of the cell population was irradiated using heavy-ion microbeams. After irradiation, we examined the cytokine productions. RESULTS When cells were irradiated with 5 Gy, cytokine levels were reduced after both microbeam irradiation and broad-beam irradiation. TNF-α production of macrophages with the nitric oxide (NO) inhibitor-treatment increased after carbon-ion broad-beam. NO was involved in the radiation-induced suppression of TNF-α production. CONCLUSIONS The suppression of cytokine production arose after irradiation with heavy-ions, and may also be induced in the surrounding non-irradiated cells via the bystander effect.
Collapse
Affiliation(s)
- Yasuko Mutou-Yoshihara
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | | | | | | |
Collapse
|
8
|
Schettino G, Al Rashid ST, Prise KM. Radiation microbeams as spatial and temporal probes of subcellular and tissue response. Mutat Res 2010; 704:68-77. [PMID: 20079877 DOI: 10.1016/j.mrrev.2010.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/22/2009] [Accepted: 01/06/2010] [Indexed: 11/29/2022]
Abstract
Understanding the effects of ionizing radiations are key to determining their optimal use in therapy and assessing risks from exposure. The development of microbeams where radiations can be delivered in a highly temporal and spatially constrained manner has been a major advance. Several different types of radiation microbeams have been developed using X-rays, charged particles and electrons. For charged particles, beams can be targeted with sub-micron accuracy into biological samples and the lowest possible dose of a single particle track can be delivered with high reproducibility. Microbeams have provided powerful tools for understanding the kinetics of DNA damage and formation under conditions of physiological relevance and have significant advantages over other approaches for producing localized DNA damage, such as variable wavelength laser beam approaches. Recent studies have extended their use to probing for radiosensitive sites outside the cell nucleus, and testing for mechanisms underpinning bystander responses where irradiated and non-irradiated cells communicate with each other. Ongoing developments include the ability to locally target regions of 3D tissue models and ultimately to target localized regions in vivo. With future advances in radiation delivery and imaging microbeams will continue to be applied in a range of biological studies.
Collapse
Affiliation(s)
- Giuseppe Schettino
- Centre for Cancer Research & Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT97BL, UK
| | | | | |
Collapse
|
9
|
Harada K, Nonaka T, Hamada N, Sakurai H, Hasegawa M, Funayama T, Kakizaki T, Kobayashi Y, Nakano T. Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication. Cancer Sci 2009; 100:684-8. [PMID: 19469013 PMCID: PMC11159273 DOI: 10.1111/j.1349-7006.2009.01093.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/28/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to clarify the mechanisms of cell death induced by heavy-ion irradiation focusing on the bystander effect in human lung cancer A549 cells. In microbeam irradiation, each of 1, 5, and 25 cells under confluent cell conditions was irradiated with 1, 5, or 10 particles of carbon ions (220 MeV), and then the surviving fraction of the population was measured by a clonogenic assay in order to investigate the bystander effect of heavy-ions. In this experiment, the limited number of cells (0.0001-0.002%, 5-25 cells) under confluent cell conditions irradiated with 5 or 10 carbon ions resulted in an exaggerated 8-14% increase in cell death by clonogenic assay. However, these overshooting responses were not observed under exponentially growing cell conditions. Furthermore, these responses were inhibited in cells treated with an inhibitor of gap junctional intercellular communication (GJIC), whereas they were markedly enhanced by the addition of a stimulator of GJIC. The present results suggest that bystander cell killing by heavy-ions was induced mainly by direct cell-to-cell communication, such as GJIC, which might play important roles in bystander responses.
Collapse
Affiliation(s)
- Kosaku Harada
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hino M, Hamada N, Tajika Y, Funayama T, Morimura Y, Sakashita T, Yokota Y, Fukamoto K, Kobayashi Y, Yorifuji H. Insufficient membrane fusion in dysferlin-deficient muscle fibers after heavy-ion irradiation. Cell Struct Funct 2009; 34:11-5. [PMID: 19218742 DOI: 10.1247/csf.08033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, SJL/J mice have been used as an animal model in studies of dysferlinopathy, a spectrum of muscle diseases caused by defects in dysferlin protein. In this study we irradiated muscle fibers isolated from skeletal muscle of SJL/J mice with heavy-ion microbeam, and the ultrastructural changes were observed by electron microscopy. The plasma membrane of heavy-ion beam irradiated areas showed irregular protrusions and invaginations. Disruption of sarcomeric structures and the enhancement of autophagy were also observed. In addition, many vesicles of varying size and shape were seen to be accumulated just beneath the plasma membrane. This finding further supports the recent hypothesis that dysferlin functions as a membrane fusion protein in the wound healing system of plasma membrane, and that the defect in dysferlin causes insufficient membrane fusion resulting in accumulation of vesicles.
Collapse
Affiliation(s)
- Mizuki Hino
- Department of Anatomy, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hamada N. The Bystander Response to Heavy-Ion Radiation: Intercellular Signaling Between Irradiated and Non-Irradiated Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.2187/bss.23.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hamada N. Recent insights into the biological action of heavy-ion radiation. JOURNAL OF RADIATION RESEARCH 2009; 50:1-9. [PMID: 18838844 DOI: 10.1269/jrr.08070] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biological effectiveness varies with the linear energy transfer (LET) of ionizing radiation. During cancer therapy or long-term interplanetary manned explorations, humans are exposed to high-LET energetic heavy ions that inactivate cells more effectively than low-LET photons like X-rays and gamma-rays. Recent biological studies have illustrated that heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, p53 mutations and intratumor hypoxia, and possess antiangiogenic and antimetastatic potential. Compared with heavy ions alone, the combination with chemical agents (a Bcl-2 inhibitor HA14-1, an anticancer drug docetaxel, and a halogenated pyrimidine analogue 5-iodo-2'-deoxyuridine) or hyperthermia further enhances tumor cell killing. Beer, its certain constituents, or melatonin ameliorate heavy ion-induced damage to normal cells. In addition to effects in cells directly targeted with heavy ions, there is mounting evidence for nontargeted biological effects in cells that have not themselves been directly irradiated. The bystander effect of heavy ions manifests itself as the loss of clonogenic potential, a transient apoptotic response, delayed p53 phosphorylation, alterations in gene expression profiles, and the elevated frequency of gene mutations, micronuclei and chromosome aberrations, which arise in nonirradiated cells having received signals from irradiated cells. Proposed mediating mechanisms involve gap junctional intercellular communication, reactive oxygen species and nitric oxide. This paper reviews briefly the current knowledge of the biological effects of heavy-ion irradiation with a focus on recent findings regarding its potential benefits for therapeutic use as well as on the bystander effect.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Department of Quantum Biology, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
13
|
Kim EH. BETTER UNDERSTANDING OF THE BIOLOGICAL EFFECTS OF RADIATION BY MICROSCOPIC APPROACHES. NUCLEAR ENGINEERING AND TECHNOLOGY 2008. [DOI: 10.5516/net.2008.40.7.551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Oikawa M, Satoh T, Kamiya T, Kurashima S, Okumura S, Miyawaki N, Kashiwagi H, Fukuda M, Sakai T, Yokota W. Characteristics of focusing high-energy heavy ion microbeam system at the JAEA AVF cyclotron. Appl Radiat Isot 2008; 67:484-7. [PMID: 18674919 DOI: 10.1016/j.apradiso.2008.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ion optical analysis was made for a new focusing high-energy heavy ion microbeam system connected to the AVF cyclotron (K=110) at the accelerator facility, TIARA of JAEA Takasaki. The focusing performance of the microbeam system was estimated from both the calculation up to third-order term using TRANSPORT code and the measurement of beam resolution with the secondary electron imaging. As a result, a minimum beam size was evaluated at 0.56 and 0.62 microm in FWHM for the X and Y directions, respectively. The high-energy heavy ion microbeam system seemed to have been established as designed by the calculation with the TRANSPORT code, because it was confirmed that the calculation results was fairly reproduced by the measurement result.
Collapse
Affiliation(s)
- Masakazu Oikawa
- Department of Advanced Radiation Technology, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells. Mutat Res 2008; 642:57-67. [PMID: 18538798 DOI: 10.1016/j.mrfmmm.2008.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 04/04/2008] [Accepted: 04/16/2008] [Indexed: 11/21/2022]
Abstract
Evidence has accumulated that ionizing radiation induces biological effects in non-irradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. Here we performed microarray analysis of irradiated and bystander fibroblasts in confluent cultures. To see the effects in bystander cells, each of 1, 5 and 25 sites was targeted with 10 particles of carbon ions (18.3 MeV/u, 103 keV/microm) using microbeams, where particles traversed 0.00026, 0.0013 and 0.0066% of cells, respectively. diated cells, cultures were exposed to 10% survival dose (D), 0.1D and 0.01D of corresponding broadbeams (108 keV/microm). Irrespective of the target numbers (1, 5 or 25 sites) and the time (2 or 6h postirradiation), similar expression changes were observed in bystander cells. Among 874 probes that showed more than 1.5-fold changes in bystander cells, 25% were upregulated and the remainder downregulated. These included genes related to cell communication (PIK3C2A, GNA13, FN1, ANXA1 and IL1RAP), stress response (RAD23B, ATF4 and EIF2AK4) and cell cycle (MYCN, RBBP4 and NEUROG1). Pathway analysis revealed serial bystander activation of G protein/PI-3 kinase pathways. Instead, genes related to cell cycle or death (CDKN1A, GADD45A, NOTCH1 and BCL2L1), and cell communication (IL1B, TCF7 and ID1) were upregulated in irradiated cells, but not in bystander cells. Our results indicate different expression profiles in irradiated and bystander cells, and imply that intercellular signaling between irradiated and bystander cells activate intracellular signaling, leading to the transcriptional stress response in bystander cells.
Collapse
|
16
|
Hamada N, Ni M, Funayama T, Sakashita T, Kobayashi Y. Temporally distinct response of irradiated normal human fibroblasts and their bystander cells to energetic heavy ions. Mutat Res 2008; 639:35-44. [PMID: 18082226 DOI: 10.1016/j.mrfmmm.2007.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/19/2007] [Accepted: 11/02/2007] [Indexed: 05/25/2023]
Abstract
Ionizing radiation-induced bystander effects have been documented for a multitude of endpoints such as mutations, chromosome aberrations and cell death, which arise in nonirradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. To address this, we employed precise microbeams of carbon and neon ions for targeting only a very small fraction of cells in confluent fibroblast cultures. Conventional broadfield irradiation was conducted in parallel to see the effects in irradiated cells. Exposure of 0.00026% of cells led to nearly 10% reductions in the clonogenic survival and twofold rises in the apoptotic incidence regardless of ion species. Whilst apoptotic frequency increased with time up to 72 h postirradiation in irradiated cells, its frequency escalated up to 24h postirradiation but declined at 48 h postirradiation in bystander cells, indicating that bystander cells exhibit transient commitment to apoptosis. Carbon- and neon-ion microbeam irradiation similarly caused almost twofold increments in the levels of serine 15-phosphorylated p53 proteins, irrespective of whether 0.00026, 0.0013 or 0.0066% of cells were targeted. Whereas the levels of phosphorylated p53 were elevated and remained unchanged at 2h and 6h postirradiation in irradiated cells, its levels rose at 6h postirradiation but not at 2h postirradiation in bystander cells, suggesting that bystander cells manifest delayed p53 phosphorylation. Collectively, our results indicate that heavy ions inactivate clonogenic potential of bystander cells, and that the time course of the response to heavy ions differs between irradiated and bystander cells. These induced bystander responses could be a defensive mechanism that minimizes further expansion of aberrant cells.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Department of Quantum Biology, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | |
Collapse
|
17
|
Hamada N, Hara T, Omura-Minamisawa M, Ni M, Funayama T, Sakashita T, Sora S, Nakano T, Kobayashi Y. Heavy-Ion Microbeam Irradiation Induces Bystander Killing of Human Cells. ACTA ACUST UNITED AC 2008. [DOI: 10.2187/bss.22.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Fukamoto K, Shirai K, Sakata T, Sakashita T, Funayama T, Hamada N, Wada S, Kakizaki T, Shimura S, Kobayashi Y, Kiguchi K. Development of the irradiation method for the first instar silkworm larvae using locally targeted heavy-ion microbeam. JOURNAL OF RADIATION RESEARCH 2007; 48:247-53. [PMID: 17327687 DOI: 10.1269/jrr.06066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To carry out the radio-microsurgery study using silkworm, Bombyx mori, we have already developed the specific irradiation systems for eggs and third to fifth instar larvae. In this study, a modified application consisting of the first instar silkworm larvae was further developed using heavy-ion microbeams. This system includes aluminum plates with holes specially designed to fix the first instar silkworm larvae during irradiation, and Mylar films were used to adjust energy deposited for planning radiation doses at certain depth. Using this system, the suppression of abnormal proliferation of epidermal cells in the knob mutant was examined. Following target irradiation of the knob-forming region at the first instar stage with 180-mum-diameter microbeam of 220 MeV carbon (12C) ions, larvae were reared to evaluate the effects of irradiation. The results indicated that the knob formation at the irradiated segment was specially suppressed in 5.9, 56.4, 66.7 and 73.6% of larvae irradiated with 120, 250, 400 and 600 Gy, respectively, but the other knob formations at the non-irradiated segments were not suppressed in either irradiation. Although some larva did not survive undesired non-targeted exposure, our present results indicate that this method would be useful to investigate the irradiation effect on a long developmental period of time. Moreover, our system could also be applied to other species by targeting tissues, or organs during development and metamorphosis in insect and animals.
Collapse
Affiliation(s)
- Kana Fukamoto
- Microbeam Radiation Biology Group, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hino M, Wada S, Tajika Y, Morimura Y, Hamada N, Funayama T, Sakashita T, Kakizaki T, Kobayashi Y, Yorifuji H. Heavy ion microbeam irradiation induces ultrastructural changes in isolated single fibers of skeletal muscle. Cell Struct Funct 2007; 32:51-6. [PMID: 17460350 DOI: 10.1247/csf.06038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The effects of heavy ion microbeams on muscle fibers isolated from mouse skeletal muscles were examined by electron microscopy. The plasma membranes of heavy ion beam-irradiated areas of muscle fibers showed irregular protrusions and invaginations. In the cytoplasm, an irregular distribution of microfilaments was found near the plasma membrane. Sarcoplasmic reticula in the irradiated regions showed a distended appearance with flocculent material within the lumen. These changes were seen as early as 2 min after irradiation, and persisted until as late as 22 min after irradiation. Many autophagic vacuoles could be seen at 7 min after irradiation. At 22 min, the vacuoles became more prominent and showed more variety. These observations suggest that heavy ion beam irradiation causes disruption of the cellular architecture and the autophagy is involved in removal of this disruption.
Collapse
Affiliation(s)
- Mizuki Hino
- Department of Neuromuscular and Developmental Anatomy, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Comolli LR, Kundmann M, Downing KH. Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging. J Microsc 2006; 223:40-52. [PMID: 16872430 DOI: 10.1111/j.1365-2818.2006.01597.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We illustrate the combined use of cryo-electron tomography and spectroscopic difference imaging in the study of subcellular structure and subcellular bodies in whole bacteria. We limited our goal and focus to bodies with a distinct elemental composition that was in a sufficiently high concentration to provide the necessary signal-to-noise level at the relatively large sample thicknesses of the intact cell. This combination proved very powerful, as demonstrated by the identification of a phosphorus-rich body in Caulobacter crescentus. We also confirmed the presence of a body rich in carbon, demonstrated that these two types of bodies are readily recognized and distinguished from each other, and provided, for the first time to our knowledge, structural information about them in their intact state. In addition, we also showed the presence of a similar type of phosphorus-rich body in Deinococcus grandis, a member of a completely unrelated bacteria genus. Cryo-electron microscopy and tomography allowed the study of the biogenesis and morphology of these bodies at resolutions better than 10 nm, whereas spectroscopic difference imaging provided a direct identification of their chemical composition.
Collapse
Affiliation(s)
- L R Comolli
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | | | | |
Collapse
|
21
|
Manti L. Does reduced gravity alter cellular response to ionizing radiation? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2006; 45:1-8. [PMID: 16523345 DOI: 10.1007/s00411-006-0037-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 02/08/2006] [Indexed: 05/07/2023]
Abstract
This review addresses the purported interplay between actual or simulated weightlessness and cellular response to ionizing radiation. Although weightlessness is known to alter several cellular functions and to affect signaling pathways implicated in cell proliferation, differentiation and death, its influence on cellular radiosensitivity has so far proven elusive. Renewed controversy as to whether reduced gravity enhances long-term radiation risk is fueled by recently published data that claim either overall enhancement of genomic damage or no increase of radiation-induced clastogenicity by modeled microgravity in irradiated human cells. In elucidating this crucial aspect of space radiation protection, ground-based experiments, such as those based on rotating-wall bioreactors, will increasingly be used and represent a more reproducible alternative to in-flight experiments. These low-shear vessels also make three-dimensional cellular co-cultures possible and thus allow to study the gravisensitivity of radioresponse in a context that better mimics cell-to-cell communication and hence in vivo cellular behavior.
Collapse
Affiliation(s)
- Lorenzo Manti
- Radiation Biophysics Laboratory, Physics Department, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|