1
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Šantl-Temkiv T, Amato P, Casamayor EO, Lee PKH, Pointing SB. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6524182. [PMID: 35137064 PMCID: PMC9249623 DOI: 10.1093/femsre/fuac009] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
The atmosphere connects habitats across multiple spatial scales via airborne dispersal of microbial cells, propagules and biomolecules. Atmospheric microorganisms have been implicated in a variety of biochemical and biophysical transformations. Here, we review ecological aspects of airborne microorganisms with respect to their dispersal, activity and contribution to climatic processes. Latest studies utilizing metagenomic approaches demonstrate that airborne microbial communities exhibit pronounced biogeography, driven by a combination of biotic and abiotic factors. We quantify distributions and fluxes of microbial cells between surface habitats and the atmosphere and place special emphasis on long-range pathogen dispersal. Recent advances have established that these processes may be relevant for macroecological outcomes in terrestrial and marine habitats. We evaluate the potential biological transformation of atmospheric volatile organic compounds and other substrates by airborne microorganisms and discuss clouds as hotspots of microbial metabolic activity in the atmosphere. Furthermore, we emphasize the role of microorganisms as ice nucleating particles and their relevance for the water cycle via formation of clouds and precipitation. Finally, potential impacts of anthropogenic forcing on the natural atmospheric microbiota via emission of particulate matter, greenhouse gases and microorganisms are discussed.
Collapse
Affiliation(s)
- Tina Šantl-Temkiv
- Department of Biology, Aarhus University, DK-8000 Aarhus, Denmark
- Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus, Denmark
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont Auvergne, 63178, Clermont-Ferrand, France
| | - Emilio O Casamayor
- Centre for Advanced Studies of Blanes, Spanish Council for Research (CSIC), 17300, Blanes, Spain
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Stephen B Pointing
- Corresponding author: Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527. Tel: +65 6601 1000; E-mail:
| |
Collapse
|
3
|
Fujiwara D, Kawaguchi Y, Kinoshita I, Yatabe J, Narumi I, Hashimoto H, Yokobori SI, Yamagishi A. Mutation Analysis of the rpoB Gene in the Radiation-Resistant Bacterium Deinococcus radiodurans R1 Exposed to Space during the Tanpopo Experiment at the International Space Station. ASTROBIOLOGY 2021; 21:1494-1504. [PMID: 34694920 DOI: 10.1089/ast.2020.2424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To investigate microbial viability and DNA damage, dried cell pellets of the radiation-resistant bacterium Deinococcus radiodurans were exposed to various space environmental conditions at the Exposure Facility of the International Space Station (ISS) as part of the Tanpopo mission. Mutation analysis was done by sequencing the rpoB gene encoding RNA polymerase β-subunit of the rifampicin-resistant mutants. Samples included bacteria exposed to the space environment with and without exposure to UV radiation as well as control samples held in the ISS cabin and at ground. The mutation sites of the rpoB gene obtained from the space-exposed and ISS/ground control samples were similar to the rpoB mutation sites previously reported in D. radiodurans. Most mutations were found at or near the rifampicin binding site in the RNA polymerase β-subunit. Mutation sites found in UV-exposed samples were mostly shared with non-exposed and ISS/ground control samples. These results suggest that most mutations found in our experiments were induced during procedures that were applied across all treatments: preparation, transfer from our laboratory to the ISS, return from the ISS, and storage before analysis. Some mutations may be enhanced by specific factors in the space experiments, but the mutations were also found in the spontaneous and control samples. Our experiment suggests that the dried cells of the microorganism D. radiodurans can travel without space-specific deterioration that may induce excess mutations relative to travel at Earth's surface. However, upon arrival at a recipient location, they must still be able to survive and repair the general damage induced during travel.
Collapse
Affiliation(s)
- Daisuke Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yuko Kawaguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Iori Kinoshita
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Jun Yatabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Issay Narumi
- Faculty of Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| | - Shin-Ichi Yokobori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Akihiko Yamagishi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa, Japan
| |
Collapse
|
4
|
Kawaguchi Y, Yokobori SI, Hashimoto H, Yano H, Tabata M, Kawai H, Yamagishi A. Investigation of the Interplanetary Transfer of Microbes in the Tanpopo Mission at the Exposed Facility of the International Space Station. ASTROBIOLOGY 2016; 16:363-76. [PMID: 27176813 DOI: 10.1089/ast.2015.1415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UNLABELLED The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed. KEY WORDS Panspermia-Astrobiology-Low-Earth orbit. Astrobiology 16, 363-376.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Shin-Ichi Yokobori
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| | - Hirofumi Hashimoto
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Hajime Yano
- 1 Institute of Space and Astronautical Science , Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Japan
| | - Makoto Tabata
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Hideyuki Kawai
- 3 Graduate School of Science, Chiba University , Chiba-shi, Japan
| | - Akihiko Yamagishi
- 2 School of Life Sciences, Tokyo University of Pharmacy and Life Sciences , Hachioji, Tokyo, Japan
| |
Collapse
|
5
|
Kawaguchi Y, Sugino T, Tabata M, Okudaira K, Imai E, Yano H, Hasegawa S, Hashimoto H, Yabuta H, Kobayashi K, Kawai H, Mita H, Yokobori SI, Yamagishi A. Fluorescence imaging of microbe-containing particles shot from a two-stage Light-gas gun into an aerogel. ORIGINS LIFE EVOL B 2014; 44:43-60. [PMID: 25086872 DOI: 10.1007/s11084-014-9361-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 06/26/2014] [Indexed: 10/24/2022]
Abstract
We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of ~8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- Department of Applied Life Sciences School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Smith DJ. Microbes in the upper atmosphere and unique opportunities for astrobiology research. ASTROBIOLOGY 2013; 13:981-90. [PMID: 24106911 DOI: 10.1089/ast.2013.1074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microbial taxa from every major biological lineage have been detected in Earth's upper atmosphere. The goal of this review is to communicate (1) relevant astrobiology questions that can be addressed with upper atmosphere microbiology studies and (2) available sampling methods for collecting microbes at extreme altitudes. Precipitation, mountain stations, airplanes, balloons, rockets, and satellites are all feasible routes for conducting aerobiology research. However, more efficient air samplers are needed, and contamination is also a pervasive problem in the field. Measuring microbial signatures without false positives in the upper atmosphere might contribute to sterilization and bioburden reduction methods for proposed astrobiology missions. Intriguingly, environmental conditions in the upper atmosphere resemble the surface conditions of Mars (extreme cold, hypobaria, desiccation, and irradiation). Whether terrestrial microbes are active in the upper atmosphere is an area of intense research interest. If, in fact, microbial metabolism, growth, or replication is achievable independent of Earth's surface, then the search for habitable zones on other worlds should be broadened to include atmospheres (e.g., the high-altitude clouds of Venus). Furthermore, viable cells in the heavily irradiated upper atmosphere of Earth could help identify microbial genes or enzymes that bestow radiation resistance. Compelling astrobiology questions on the origin of life (if the atmosphere synthesized organic aerosols), evolution (if airborne transport influenced microbial mutation rates and speciation), and panspermia (outbound or inbound) are also testable in Earth's upper atmosphere.
Collapse
Affiliation(s)
- David J Smith
- NASA John F. Kennedy Space Center , Surface Systems Office, Kennedy Space Center, Florida
| |
Collapse
|
7
|
Kawaguchi Y, Yang Y, Kawashiri N, Shiraishi K, Takasu M, Narumi I, Satoh K, Hashimoto H, Nakagawa K, Tanigawa Y, Momoki YH, Tanabe M, Sugino T, Takahashi Y, Shimizu Y, Yoshida S, Kobayashi K, Yokobori SI, Yamagishi A. The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS Environmental conditions for performing exposure experiments of microbes in the Tanpopo mission. ORIGINS LIFE EVOL B 2013; 43:411-28. [PMID: 24132659 DOI: 10.1007/s11084-013-9346-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 09/16/2013] [Indexed: 01/29/2023]
Abstract
To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.
Collapse
Affiliation(s)
- Yuko Kawaguchi
- Laboratory for Extremophiles, Department of Applied Molecular Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Non-terrestrial origin of life: a transformative research paradigm shift. Theory Biosci 2012; 132:133-7. [PMID: 23225070 DOI: 10.1007/s12064-012-0172-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
Theories and hypotheses in science are continually subject to verification, critical re-evaluation, revision and indeed evolution, in response to new observations and discoveries. Theories of the origin of life have been more constrained than other scientific theories and hypotheses in this regard, through the force of social and cultural pressures. There has been a tendency to adhere too rigidly to a class of theory that demands a purely terrestrial origin of life. For nearly five decades evidence in favour of a non-terrestrial origin of life and panspermia has accumulated which has not been properly assessed. A point has now been reached that demands the serious attention of biologists to a possibly transformative paradigm shift of the question of the origin of life, with profound implications across many disciplines.
Collapse
|
9
|
|
10
|
Abstract
The biological record suggests that life on Earth arose as soon as conditions were favorable, which indicates that life either originated quickly, or arrived from elsewhere to seed Earth. Experimental research under the theme of “astrobiology” has produced data that some view as strong evidence for the second possibility, known as the panspermia hypothesis. While it is not unreasonable to consider the possibility that Earth’s life originated elsewhere and potentially much earlier, we conclude that the current literature offers no definitive evidence to support this hypothesis.
Chladni’s view, that they fall from the skies, pronounced in 1795, was ridiculed by the learned men of the times. (Rachel, 1881) Evidence of life on Mars, even if only in the distant past, would finally answer the age-old question of whether living beings on Earth are alone in the universe. The magnitude of such a discovery is illustrated by President Bill Clinton’s appearance at a 1996 press conference to announce that proof had been found at last. A meteorite chipped from the surface of the Red Planet some 15 million years ago appeared to contain the fossil remains of tiny life-forms that indicated life had once existed on Mars. (Young and Martel, 2010)
Collapse
|
11
|
Tabata M, Kawaguchi Y, Yokobori SI, Kawai H, Takahashi JI, Yano H, Yamagishi A. Tanpopo Cosmic Dust Collector: Silica Aerogel Production and Bacterial DNA Contamination Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.2187/bss.25.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|