1
|
Kawabata Y, Fukushige T, Indo HP, Matsumoto KI, Ueno M, Nakanishi I, Chatatikun M, Klangbud WK, Surinkaew S, Tangpong J, Kanekura T, Majima HJ. Hair Follicle Damage after 100 mGy Low-Dose Fractionated X-Ray Irradiation and the Protective Effects of TEMPOL, a Stable Nitroxide Radical, against Radiation. Radiat Res 2024; 201:115-125. [PMID: 38211765 DOI: 10.1667/rade-23-00167.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
The effects of long-term low-dose X-ray irradiation on the outer root sheath (ORS) cells of C3H/He mice were investigated. Mice were irradiated with a regime of 100 mGy/day, 5 days/week, for 12 weeks (Group X) and the results obtained were compared to those in a non-irradiated control (Group C). Potential protection against ORS cells damage induced by this exposure was investigated by adding the stable nitroxide radical 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) at 1 mM to the drinking water of mice (Group X + TEMPOL). The results obtained were compared with Group C and a non-irradiated group treated with TEMPOL (Group C + TEMPOL). After fractionated X-ray irradiation, skin was removed and ORS cells were examined by hematoxylin and eosin staining and electron microscopy for an abnormal nuclear morphology and nuclear condensation changes. Fractionated X-irradiated mice had an increased number of ORS cells with an abnormal nuclear morphology as well as nuclear condensation changes. Sections were also immunohistochemically examined for the presence of TdT-mediated dUTP nick-end labeling (TUNEL), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), vascular endothelial growth factor (VEGF), nitrotyrosine, heme oxygenase 1 (HO-1), and protein gene product 9.5 (PGP 9.5). Significant increases were observed in TUNEL, 8-OHdG, and 4-HNE levels in ORS cells from mice in Group X. Electron microscopy also showed irregular shrunken ORS cells in Group X. These changes were prevented by the presence of TEMPOL in the drinking water of the irradiated mice. TEMPOL alone had no significant effects. These results suggest that fractionated doses of radiation induced oxidative damage in ORS cells; however, TEMPOL provided protection against this damage, possibly as a result of the rapid reaction of this nitroxide radical with the reactive oxidants generated by fractionated X-ray irradiation.
Collapse
Affiliation(s)
- Yoshihiro Kawabata
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tomoko Fukushige
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University Graduate School of and Engineering, Kagoshima 890-0065, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Moragot Chatatikun
- Biomedical Sciences, School of Allied Health Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wiyada Kwanhian Klangbud
- Biomedical Sciences, School of Allied Health Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sirirat Surinkaew
- Biomedical Sciences, School of Allied Health Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jitbanjong Tangpong
- Biomedical Sciences, School of Allied Health Sciences, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University Graduate School of and Engineering, Kagoshima 890-0065, Japan
- Center of Excellence Research for Melioidosis and Microorganisms, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
2
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
3
|
Evaluation of psychological stress in confined environments using salivary, skin, and facial image parameters. Sci Rep 2018; 8:8264. [PMID: 29844534 PMCID: PMC5974367 DOI: 10.1038/s41598-018-26654-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Detecting the influence of psychological stress is particularly important in prolonged space missions. In this study, we determined potential markers of psychological stress in a confined environment. We examined 23 Japanese subjects staying for 2 weeks in a confined facility at Tsukuba Space Center, measuring salivary, skin, and facial image parameters. Saliva was collected at four points in a single day to detect diurnal variation. Increases in salivary cortisol were detected after waking up on the 4th and 11th days, and at 15:30 on the 1st and in the second half of the stay. Transepidermal water loss (TEWL) and sebum content of the skin were higher compared with outside the facility on the 4th and 1st days respectively. Increased IL-1β in the stripped stratum corneum was observed on the 14th day, and 7 days after leaving. Differences in facial expression symmetry at the time of facial expression changes were observed on 11th and 14th days. Thus, we detected a transition of psychological stress using salivary cortisol profiles and skin physiological parameters. The results also suggested that IL-1β in the stripped stratum corneum and facial expression symmetry are possible novel markers for conveniently detecting psychological stress.
Collapse
|
4
|
Indo HP, Hawkins CL, Nakanishi I, Matsumoto KI, Matsui H, Suenaga S, Davies MJ, St Clair DK, Ozawa T, Majima HJ. Role of Mitochondrial Reactive Oxygen Species in the Activation of Cellular Signals, Molecules, and Function. Handb Exp Pharmacol 2017; 240:439-456. [PMID: 28176043 DOI: 10.1007/164_2016_117] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria are a major source of intracellular energy and reactive oxygen species in cells, but are also increasingly being recognized as a controller of cell death. Here, we review evidence of signal transduction control by mitochondrial superoxide generation via the nuclear factor-κB (NF-κB) and GATA signaling pathways. We have also reviewed the effects of ROS on the activation of MMP and HIF. There is significant evidence to support the hypothesis that mitochondrial superoxide can initiate signaling pathways following transport into the cytosol. In this study, we provide evidence of TATA signal transductions by mitochondrial superoxide. Oxidative phosphorylation via the electron transfer chain, glycolysis, and generation of superoxide from mitochondria could be important factors in regulating signal transduction, cellular homeostasis, and cell death.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, NSW, 2042, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team (QRST), Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture, 305-8575, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - Daret K St Clair
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Toshihiko Ozawa
- Division of Oxidative Stress Research, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan. .,Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan.
| |
Collapse
|
5
|
Indo HP, Majima HJ, Terada M, Suenaga S, Tomita K, Yamada S, Higashibata A, Ishioka N, Kanekura T, Nonaka I, Hawkins CL, Davies MJ, Clair DKS, Mukai C. Changes in mitochondrial homeostasis and redox status in astronauts following long stays in space. Sci Rep 2016; 6:39015. [PMID: 27982062 PMCID: PMC5159838 DOI: 10.1038/srep39015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/17/2016] [Indexed: 11/26/2022] Open
Abstract
The effects of long-term exposure to extreme space conditions on astronauts were investigated by analyzing hair samples from ten astronauts who had spent six months on the International Space Station (ISS). Two samples were collected before, during and after their stays in the ISS; hereafter, referred to as Preflight, Inflight and Postflight, respectively. The ratios of mitochondrial (mt) to nuclear (n) DNA and mtRNA to nRNA were analyzed via quantitative PCR. The combined data of Preflight, Inflight and Postflight show a significant reduction in the mtDNA/nDNA in Inflight, and significant reductions in the mtRNA/nRNA ratios in both the Inflight and Postflight samples. The mtRNA/mtDNA ratios were relatively constant, except in the Postflight samples. Using the same samples, the expression of redox and signal transduction related genes, MnSOD, CuZnSOD, Nrf2, Keap1, GPx4 and Catalase was also examined. The results of the combined data from Preflight, Inflight and Postflight show a significant decrease in the expression of all of the redox-related genes in the samples collected Postflight, with the exception of Catalase, which show no change. This decreased expression may contribute to increased oxidative stress Inflight resulting in the mitochondrial damage that is apparent Postflight.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Hideyuki J Majima
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Masahiro Terada
- Divison of Aerospace Medicine, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan.,Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan.,Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Shigeaki Suenaga
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Shin Yamada
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan
| | - Akira Higashibata
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan.,Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan
| | - Noriaki Ishioka
- Department of Oncology and Space Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan.,Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan.,Institute of Space and Astronautical Science, Sagamihara, Kanagawa 252-5210, Japan.,Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Sagamihara, Kanagawa 252-5210, Japan
| | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima 890-8544, Japan
| | - Ikuya Nonaka
- National Center Hospital for Mental Nervous and Muscular Disorders, Kodaira, Tokyo 187-8551, Japan
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536, USA
| | - Chiaki Mukai
- Japan Aerospace Exploration Agency, Tsukuba City, Ibaraki 305-8505, Japan.,Tokyo University of Science, Shinjuku, Tokyo 162-0825, Japan
| |
Collapse
|
6
|
Majima HJ, Indo HP, Nakanishi I, Suenaga S, Matsumoto KI, Matsui H, Minamiyama Y, Ichikawa H, Yen HC, Hawkins CL, Davies MJ, Ozawa T, St Clair DK. Chasing great paths of Helmut Sies “Oxidative Stress”. Arch Biochem Biophys 2016; 595:54-60. [DOI: 10.1016/j.abb.2015.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/11/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
|
7
|
Indo HP, Tomiyoshi T, Suenaga S, Tomita K, Suzuki H, Masuda D, Terada M, Ishioka N, Gusev O, Cornette R, Okuda T, Mukai C, Majima HJ. MnSOD downregulation induced by extremely low 0.1 mGy single and fractionated X-rays and microgravity treatment in human neuroblastoma cell line, NB-1. J Clin Biochem Nutr 2015; 57:98-104. [PMID: 26388666 PMCID: PMC4566025 DOI: 10.3164/jcbn.15-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 11/22/2022] Open
Abstract
A human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1–3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Tsukasa Tomiyoshi
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Hiromi Suzuki
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Life Science Research Group, Department of Science and Applications, Japan Space Forum, 3-2-1 Surugadai, Chiyoda, Tokyo 100-0004, Japan
| | - Daisuke Masuda
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Utilization & Engineering Department, Japan Manned Space Systems Corporation, 2-1-6 Tsukuba, Ibaraki 305-0047, Japan
| | - Masahiro Terada
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Space Biosciences Division, NASA Ames Research Center, Moffett Field, California 94035, USA
| | - Noriaki Ishioka
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Biology and Microgravity Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Oleg Gusev
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Biology and Microgravity Sciences, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan ; Department of Invertebrates Zoology and Functional Morphology, Institute of Fundamental Medicine and Biology, Kazan Federal University 420008, Kremevskaya str., 17 Kazan 420-008, Russia ; Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Richard Cornette
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takashi Okuda
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Chiaki Mukai
- Center for Applied Space Medicine and Human Research, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan ; Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
8
|
Indo HP, Yen HC, Nakanishi I, Matsumoto KI, Tamura M, Nagano Y, Matsui H, Gusev O, Cornette R, Okuda T, Minamiyama Y, Ichikawa H, Suenaga S, Oki M, Sato T, Ozawa T, Clair DKS, Majima HJ. A mitochondrial superoxide theory for oxidative stress diseases and aging. J Clin Biochem Nutr 2014; 56:1-7. [PMID: 25834301 PMCID: PMC4306659 DOI: 10.3164/jcbn.14-42] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/08/2014] [Indexed: 11/26/2022] Open
Abstract
Fridovich identified CuZnSOD in 1969 and manganese superoxide dismutase (MnSOD) in 1973, and proposed ”the Superoxide Theory,” which postulates that superoxide (O2•−) is the origin of most reactive oxygen species (ROS) and that it undergoes a chain reaction in a cell, playing a central role in the ROS producing system. Increased oxidative stress on an organism causes damage to cells, the smallest constituent unit of an organism, which can lead to the onset of a variety of chronic diseases, such as Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and other neurological diseases caused by abnormalities in biological defenses or increased intracellular reactive oxygen levels. Oxidative stress also plays a role in aging. Antioxidant systems, including non-enzyme low-molecular-weight antioxidants (such as, vitamins A, C and E, polyphenols, glutathione, and coenzyme Q10) and antioxidant enzymes, fight against oxidants in cells. Superoxide is considered to be a major factor in oxidant toxicity, and mitochondrial MnSOD enzymes constitute an essential defense against superoxide. Mitochondria are the major source of superoxide. The reaction of superoxide generated from mitochondria with nitric oxide is faster than SOD catalyzed reaction, and produces peroxynitrite. Thus, based on research conducted after Fridovich’s seminal studies, we now propose a modified superoxide theory; i.e., superoxide is the origin of reactive oxygen and nitrogen species (RONS) and, as such, causes various redox related diseases and aging.
Collapse
Affiliation(s)
- Hiroko P Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan ; Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40506, USA
| | - Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Ikuo Nakanishi
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ken-Ichiro Matsumoto
- Radio-Redox-Response Research Team, Advanced Particle Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masato Tamura
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumiko Nagano
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirofumi Matsui
- Division of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Oleg Gusev
- Department of Invertebrates Zoology and Functional Morphology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremevskaya str., 17 Kazan 420-008, Russia ; Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, ISS Science Project Office, Ibaraki 305-8505, Japan ; Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Richard Cornette
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Takashi Okuda
- Anhydrobiosis Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Yukiko Minamiyama
- Food Hygiene and Environmental Health Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Hiroshi Ichikawa
- Department of Medical Life Systems, Graduate School of Life and Medical Sciences, Doshishia University, Kyoto 610-0394, Japan
| | - Shigeaki Suenaga
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Misato Oki
- Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tsuyoshi Sato
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Toshihiko Ozawa
- Division of Oxidative Stress Research, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Daret K St Clair
- Graduate Center of Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40506, USA
| | - Hideyuki J Majima
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan ; Department of Space Environmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
9
|
Indo HP, Inanami O, Koumura T, Suenaga S, Yen HC, Kakinuma S, Matsumoto KI, Nakanishi I, St Clair W, St Clair DK, Matsui H, Cornette R, Gusev O, Okuda T, Nakagawa Y, Ozawa T, Majima HJ. Roles of mitochondria-generated reactive oxygen species on X-ray-induced apoptosis in a human hepatocellular carcinoma cell line, HLE. Free Radic Res 2012; 46:1029-43. [DOI: 10.3109/10715762.2012.698012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|