1
|
Poignant F, Pariset E, Plante I, Ponomarev AL, Evain T, Viger L, Slaba TC, Blattnig SR, Costes SV. DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. Integr Biol (Camb) 2024; 16:zyae015. [PMID: 39299711 DOI: 10.1093/intbio/zyae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
Collapse
Affiliation(s)
- Floriane Poignant
- Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States
| | - Eloise Pariset
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, United States
| | - Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States
| | | | - Trevor Evain
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Louise Viger
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Tony C Slaba
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Steve R Blattnig
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Sylvain V Costes
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
| |
Collapse
|
2
|
Autsavapromporn N, Liu C, Konishi T. Impact of Co-Culturing with Fractionated Carbon-Ion-Irradiated Cancer Cells on Bystander Normal Cells and Their Progeny. Radiat Res 2017; 188:335-341. [DOI: 10.1667/rr14773.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Cuihua Liu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, 263-8555, Japan
| | - Teruaki Konishi
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Sciences and Technology (QST), Chiba, 263-8555, Japan
| |
Collapse
|
3
|
Autsavapromporn N, Plante I, Liu C, Konishi T, Usami N, Funayama T, Azzam EI, Murakami T, Suzuki M. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: The relevance to cancer risk. Int J Radiat Biol 2014; 91:62-70. [DOI: 10.3109/09553002.2014.950715] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Hase Y, Yoshihara R, Nozawa S, Narumi I. Mutagenic effects of carbon ions near the range end in plants. Mutat Res 2012; 731:41-7. [PMID: 22027091 DOI: 10.1016/j.mrfmmm.2011.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/05/2011] [Accepted: 10/13/2011] [Indexed: 05/09/2023]
Abstract
To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425keV/μm) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113keV/μm). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113keV/μm carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>∼30kb) were six times more frequently induced by carbon ions near the range end. When 352keV/μm neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113keV/μm carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.
Collapse
|