1
|
Ngai TW, Elfar GA, Yeo P, Phua N, Hor JH, Chen S, Ho YS, Cheok CF. Nitro-Deficient Niclosamide Confers Reduced Genotoxicity and Retains Mitochondrial Uncoupling Activity for Cancer Therapy. Int J Mol Sci 2021; 22:10420. [PMID: 34638761 PMCID: PMC8508655 DOI: 10.3390/ijms221910420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Niclosamide is an oral anthelmintic drug, approved for use against tapeworm infections. Recent studies suggest however that niclosamide may have broader clinical applications in cancers, spurring increased interest in the functions and mechanisms of niclosamide. Previously, we reported that niclosamide targets a metabolic vulnerability in p53-deficient tumours, providing a basis for patient stratification and personalised treatment strategies. In the present study, we functionally characterised the contribution of the aniline 4'-NO2 group on niclosamide to its cellular activities. We demonstrated that niclosamide induces genome-wide DNA damage that is mechanistically uncoupled from its antitumour effects mediated through mitochondrial uncoupling. Elimination of the nitro group in ND-Nic analogue significantly reduced γH2AX signals and DNA breaks while preserving its antitumour mechanism mediated through a calcium signalling pathway and arachidonic acid metabolism. Lipidomics profiling further revealed that ND-Nic-treated cells retained a metabolite profile characteristic of niclosamide-treated cells. Notably, quantitative scoring of drug sensitivity suggests that elimination of its nitro group enhanced the target selectivity of niclosamide against p53 deficiency. Importantly, the results also raise concern that niclosamide may impose a pleiotropic genotoxic effect, which limits its clinical efficacy and warrants further investigation into alternative drug analogues that may ameliorate any potential unwanted side effects.
Collapse
Affiliation(s)
- Tsz Wai Ngai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Gamal Ahmed Elfar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Pearlyn Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Nicholas Phua
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Jin Hui Hor
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Shuwen Chen
- Analytical Science and Technology (Metabolomics), Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (S.C.); (Y.S.H.)
| | - Ying Swan Ho
- Analytical Science and Technology (Metabolomics), Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (S.C.); (Y.S.H.)
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
2
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Chae HD, Cox N, Dahl GV, Lacayo NJ, Davis KL, Capolicchio S, Smith M, Sakamoto KM. Niclosamide suppresses acute myeloid leukemia cell proliferation through inhibition of CREB-dependent signaling pathways. Oncotarget 2017; 9:4301-4317. [PMID: 29435104 PMCID: PMC5796975 DOI: 10.18632/oncotarget.23794] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
CREB (cAMP Response Element Binding protein) is a transcription factor that is overexpressed in primary acute myeloid leukemia (AML) cells and associated with a decreased event-free survival and increased risk of relapse. We recently reported a small molecule inhibitor of CREB, XX-650-23, which inhibits CREB activity in AML cells. Structure-activity relationship analysis for chemical compounds with structures similar to XX-650-23 led to the identification of the anthelminthic drug niclosamide as a potent anti-leukemic agent that suppresses cell viability of AML cell lines and primary AML cells without a significant decrease in colony forming activity of normal bone marrow cells. Niclosamide significantly inhibited CREB function and CREB-mediated gene expression in cells, leading to apoptosis and G1/S cell cycle arrest with reduced phosphorylated CREB levels. CREB knockdown protected cells from niclosamide treatment-mediated cytotoxic effects. Furthermore, treatment with a combination of niclosamide and CREB inhibitor XX-650-23 showed an additive anti-proliferative effect, consistent with the hypothesis that niclosamide and XX-650-23 regulate the same targets or pathways to inhibit proliferation and survival of AML cells. Niclosamide significantly inhibited the progression of disease in AML patient-derived xenograft (PDX) mice, and prolonged survival of PDX mice. Niclosamide also showed synergistic effects with chemotherapy drugs to inhibit AML cell proliferation. While chemotherapy antagonized the cytotoxic potential of niclosamide, pretreatment with niclosamide sensitized cells to chemotherapeutic drugs, cytarabine, daunorubicin, and vincristine. Therefore, our results demonstrate niclosamide as a potential drug to treat AML by inducing apoptosis and cell cycle arrest through inhibition of CREB-dependent pathways in AML cells.
Collapse
Affiliation(s)
- Hee-Don Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nick Cox
- Medicinal Chemistry Knowledge Center, Stanford ChEM-H, Stanford, CA, USA
| | - Gary V Dahl
- Medicinal Chemistry Knowledge Center, Stanford ChEM-H, Stanford, CA, USA
| | - Norman J Lacayo
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kara L Davis
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Samanta Capolicchio
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark Smith
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|