1
|
Meng F, Ji Y, Chen X, Wang Y, Hua M. An integrative analysis of an lncRNA-mRNA competing endogenous RNA network to identify functional lncRNAs in uterine leiomyomas with RNA sequencing. Front Genet 2023; 13:1053845. [PMID: 36685910 PMCID: PMC9845257 DOI: 10.3389/fgene.2022.1053845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 01/06/2023] Open
Abstract
Objective: To explore the functions of mRNAs and lncRNAs in the occurrence of uterine leiomyomas (ULs) and further clarify the pathogenesis of UL by detecting the differential expression of mRNAs and lncRNAs in 10 cases of UL tissues and surrounding normal myometrial tissues by high-throughput RNA sequencing. Methods: The tissue samples of 10 patients who underwent hysterectomy for UL in Lianyungang Maternal and Child Health Hospital from January 2016 to December 2021 were collected. The differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) were identified and further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The protein-protein interaction network (PPI) was constructed in Cytoscape software. Functional annotation of the nearby target cis-DEmRNAs of DElncRNAs was performed with the Database for Annotation, Visualization, and Integrated Discovery (DAVID) (https://david.ncifcrf.gov/). Meanwhile, the co-expression network of DElncRNA-DEmRNA was constructed in Cytoscape software. Results: A total of 553 DElncRNAs (283 upregulated DElncRNAs and 270 downregulated DElncRNAs) and 3,293 DEmRNAs (1,632 upregulated DEmRNAs and 1,661 downregulated DEmRNAs) were obtained. GO pathway enrichment analysis revealed that several important pathways were significantly enriched in UL such as blood vessel development, regulation of ion transport, and external encapsulating structure organization. In addition, cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and complement and coagulation cascades were significantly enriched in KEGG pathway enrichment analysis. A total of 409 DElncRNAs-nearby-targeted DEmRNA pairs were detected, which included 118 DElncRNAs and 136 DEmRNAs. Finally, we found that the top two DElncRNAs with the most nearby DEmRNAs were BISPR and AC012531.1. Conclusion: These results suggested that 3,293 DEmRNAs and 553 DElncRNAs were differentially expressed in UL tissue and normal myometrium tissue, which might be candidate-identified therapeutic and prognostic targets for UL and be considered as offering several possible mechanisms and pathogenesis of UL in the future.
Collapse
|
2
|
Pham QT, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, Sakamoto N, Sentani K, Oue N, Yasui W. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer 2021; 21:737. [PMID: 34174844 PMCID: PMC8236178 DOI: 10.1186/s12885-021-08477-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Tryptophan 2,3-dioxygenase (TDO2) is the primary enzyme catabolizing tryptophan. Several lines of evidence revealed that overexpression of TDO2 is involved in anoikis resistance, spheroid formation, proliferation, and invasion and correlates with poor prognosis in some cancers. The aim of this research was to uncover the expression and biofunction of TDO2 in renal cell carcinoma (RCC). METHODS To show the expression of TDO2 in RCC, we performed qRT-PCR and immunohistochemistry in integration with TCGA data analysis. The interaction of TDO2 with PD-L1, CD44, PTEN, and TDO2 expression was evaluated. We explored proliferation, colony formation, and invasion in RCC cells line affected by knockdown of TDO2. RESULTS RNA-Seq and immunohistochemical analysis showed that TDO2 expression was upregulated in RCC tissues and was associated with advanced disease and poor survival of RCC patients. Furthermore, TDO2 was co-expressed with PD-L1 and CD44. In silico analysis and in vitro knockout of PTEN in RCC cell lines revealed the ability of PTEN to regulate the expression of TDO2. Knockdown of TDO2 suppressed the proliferation and invasion of RCC cells. CONCLUSION Our results suggest that TDO2 might have an important role in disease progression and could be a promising marker for targeted therapy in RCC. (199 words).
Collapse
Affiliation(s)
- Quoc Thang Pham
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Daiki Taniyama
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Sekino
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shintaro Akabane
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Go Kobayashi
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
3
|
Zhang H, Cai Y, Zheng L, Zhang Z, Lin X, Jiang N. LncRNA BISPR promotes the progression of thyroid papillary carcinoma by regulating miR-21-5p. Int J Immunopathol Pharmacol 2018; 32:2058738418772652. [PMID: 29856242 PMCID: PMC5985546 DOI: 10.1177/2058738418772652] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Our study attempted to verify the effect of lncRNA BST2 interferon-stimulated
positive regulator (BISPR) on cell viability, propagation and invasiveness of
thyroid papillary carcinoma (TPC) and the interactive relationship between BISPR
and miR-21-5p. Microarray analyzed the aberrant expression lncRNA BISPR in TPC.
BISPR and miR-21-5p as well as B-cell lymphoma-2 (Bcl-2) expressions in TPC
cells were determined by quantitative polymerase chain reaction (qRT-PCR) and
Western blot. Cell counting kit-8 (CCK-8) assay, dual luciferase reporter assay,
and transwell assay were conducted to manifest cell viability, propagation, and
invasiveness of TPC cells. Flow cytometry was performed to determine the
apoptosis and cell cycle of TPC cells. Mouse xenograft model was built to
testify the effect of BISPR on tumor growth. BISPR in TPC tissues was
over-expressed. BISPR knockdown restrained the propagation and invasiveness and
enhanced the iodine uptake of TPC cells. The tumor-forming rate reduced after
BISPR knockdown. In addition, miR-21-5p was lowly expressed in cancer tissues.
BISPR promoted the development of TPC cells by inhibiting miR-21-5p expression.
Bcl-2 was suppressed by miR-21-5p and sh-BISPR. BISPR, which was over-expressed
in TPC, improved TPC cell viability, propagation, and invasiveness. MiR-21-5p
was lowly expressed in TPC which inhibited Bcl-2 expression. BISPR stimulated
propagation and invasiveness of TPC cells by depressing miR-21-5p.
Collapse
Affiliation(s)
- Hong Zhang
- 1 Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.,2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuechang Cai
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Zheng
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanlei Zhang
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningyi Jiang
- 2 Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Sekino Y, Sakamoto N, Goto K, Honma R, Shigematsu Y, Quoc TP, Sentani K, Oue N, Teishima J, Kawakami F, Karam JA, Sircar K, Matsubara A, Yasui W. Uc.416 + A promotes epithelial-to-mesenchymal transition through miR-153 in renal cell carcinoma. BMC Cancer 2018; 18:952. [PMID: 30286729 PMCID: PMC6172711 DOI: 10.1186/s12885-018-4863-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background The transcribed ultraconserved regions (T-UCRs) are a novel class of non-coding RNAs that are absolutely conserved across species and are involved in carcinogenesis in some cancers. However, the expression and biological role of T-UCRs in renal cell carcinoma (RCC) remain poorly understood. This study aimed to examine the expression and functional role of Uc.416 + A and analyze the association between Uc.416 + A and epithelial-to-mesenchymal transition in RCC. Methods Expression of Uc.416 + A in 35 RCC tissues, corresponding normal kidney tissues and 13 types of normal tissue samples was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We performed a cell growth and migration assay in RCC cell line 786-O transfected with negative control and siRNA for Uc.416 + A. We evaluated the relation between Uc.416 + A and miR-153, which has a complimentary site of Uc.416 + A. Results qRT-PCR analysis revealed that the expression of Uc.416 + A was higher in RCC tissues than that in corresponding normal kidney tissues. Inhibition of Uc.416 + A reduced cell growth and cell migration activity. There was an inverse correlation between Uc.416 + A and miR-153. Western blot analysis showed Uc.416 + A modulated E-cadherin, vimentin and snail. The expression of Uc.416 + A was positively associated with the expression of SNAI1, VIM and inversely associated with the expression of CDH1. Conclusions The expression of Uc.416 + A was upregulated in RCC and especially in RCC tissues with sarcomatoid change. Uc.416 + A promoted epithelial-to-mesenchymal transition through miR-153. These results suggest that Uc.416 + A may be a promising therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-018-4863-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keisuke Goto
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ririno Honma
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshinori Shigematsu
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Thang Pham Quoc
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Fumi Kawakami
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose A Karam
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanishka Sircar
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akio Matsubara
- Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
5
|
Liu W, Cao Y, Guan Y, Zheng C. BST2 promotes cell proliferation, migration and induces NF-κB activation in gastric cancer. Biotechnol Lett 2018; 40:1015-1027. [PMID: 29774441 DOI: 10.1007/s10529-018-2562-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients. RESULTS BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling. CONCLUSION BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Weiyu Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
- Department of Gastroenterology, The People's Hospital of Liaoning Province, Shenyang, 110013, People's Republic of China
| | - Yong Cao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
| | - Yadi Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Shenyang, 110022, People's Republic of China.
| |
Collapse
|