Bue M, Hanberg P, Thomassen MB, Tøttrup M, Thillemann TM, Søballe K, Birke-Sørensen H. Microdialysis for the Assessment of Intervertebral Disc and Vertebral Cancellous Bone Metabolism in a Large Porcine Model.
In Vivo 2020;
34:527-532. [PMID:
32111750 DOI:
10.21873/invivo.11804]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIM
It remains challenging to evaluate the in vivo pathophysiological biochemical characteristics in spine tissue, due to lack of an applicable model and feasible methods. The aim of this study was to apply microdialysis for the assessment of basic metabolites from the C3-C4 intervertebral disc, C3 vertebral cancellous bone and subcutaneous adipose tissue in a large porcine model.
MATERIALS AND METHODS
In 7 pigs, glucose, pyruvate, lactate and glycerol concentrations were evaluated in an 8-hour sampling period.
RESULTS
The mean lactate/pyruvate (L/P) ratios for the intervertebral disc and vertebral cancellous bone were comparable and exceeded the ischemic cut-off value of 25 for the entire sampling interval. For subcutaneous adipose tissue, the L/P ratio was below the ischemic cut-off.
CONCLUSION
This exploratory study confirms previous findings of ischemia in bone and the intervertebral disc. This encourages new microdialysis study designs in spine tissue employing large porcine models to create new knowledge and a greater understanding of the metabolism and pathogenesis in spine tissue.
Collapse