1
|
Calabrese G, Dolcimascolo A, Torrisi F, Zappalà A, Gulino R, Parenti R. MiR-19a Overexpression in FTC-133 Cell Line Induces a More De-Differentiated and Aggressive Phenotype. Int J Mol Sci 2018; 19:ijms19123944. [PMID: 30544640 PMCID: PMC6320980 DOI: 10.3390/ijms19123944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, microRNAs (miRNAs) have received increasing attention for their important role in tumor initiation and progression. MiRNAs are a class of endogenous small non-coding RNAs that negatively regulate the expression of several oncogenes or tumor suppressor genes. MiR-19a, a component of the oncogenic miR-17-92 cluster, has been reported to be highly expressed only in anaplastic thyroid cancer, the most undifferentiated, aggressive and lethal form of thyroid neoplasia. In this work, we evaluated the putative contribution of miR-19a in de-differentiation and aggressiveness of thyroid tumors. To this aim, we induced miR-19a expression in the well-differentiated follicular thyroid cancer cell line and evaluated proliferation, apoptosis and gene expression profile of cancer cells. Our results showed that miR-19a overexpression stimulates cell proliferation and alters the expression profile of genes related to thyroid cell differentiation and aggressiveness. These findings not only suggest that miR-19a has a possible involvement in de-differentiation and malignancy, but also that it could represent an important prognostic indicator and a good therapeutic target for the most aggressive thyroid cancer.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Anna Dolcimascolo
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania 95123, Italy.
| |
Collapse
|
2
|
Interaction paths promote module integration and network-level robustness of spliceosome to cascading effects. Sci Rep 2018; 8:17441. [PMID: 30487551 PMCID: PMC6261937 DOI: 10.1038/s41598-018-35160-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/26/2018] [Indexed: 11/22/2022] Open
Abstract
The functionality of distinct types of protein networks depends on the patterns of protein-protein interactions. A problem to solve is understanding the fragility of protein networks to predict system malfunctioning due to mutations and other errors. Spectral graph theory provides tools to understand the structural and dynamical properties of a system based on the mathematical properties of matrices associated with the networks. We combined two of such tools to explore the fragility to cascading effects of the network describing protein interactions within a key macromolecular complex, the spliceosome. Using S. cerevisiae as a model system we show that the spliceosome network has more indirect paths connecting proteins than random networks. Such multiplicity of paths may promote routes to cascading effects to propagate across the network. However, the modular network structure concentrates paths within modules, thus constraining the propagation of such cascading effects, as indicated by analytical results from the spectral graph theory and by numerical simulations of a minimal mathematical model parameterized with the spliceosome network. We hypothesize that the concentration of paths within modules favors robustness of the spliceosome against failure, but may lead to a higher vulnerability of functional subunits, which may affect the temporal assembly of the spliceosome. Our results illustrate the utility of spectral graph theory for identifying fragile spots in biological systems and predicting their implications.
Collapse
|
3
|
Wen DY, Pan DH, Lin P, Mo QY, Wei YP, Luo YH, Chen G, He Y, Chen JQ, Yang H. Downregulation of miR‑486‑5p in papillary thyroid carcinoma tissue: A study based on microarray and miRNA sequencing. Mol Med Rep 2018; 18:2631-2642. [PMID: 30015845 PMCID: PMC6102695 DOI: 10.3892/mmr.2018.9247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
Abnormal expression of microRNA (miR) is associated with the occurrence and progression of various types of cancers, including papillary thyroid carcinoma (PTC). In the present study, the aim was to explore miR‑486‑5p expression and its role in PTC, as well as to investigate the biological function of its potential target genes. The expression levels of miR‑486‑5p and its clinicopathological significance were examined in 507 PTC and 59 normal thyroid samples via The Cancer Genome Atlas (TCGA). Subsequently, the results were validated using data from Gene Expression Omnibus (GEO) and ArrayExpress. Receiver operating characteristic and summary receiver operating characteristic curves were used to assess the ability of miR‑486‑5p in distinguishing PTC from normal tissue. Furthermore, potential miR‑486‑5p mRNA targets were identified using 12 prediction tools and enrichment analysis was performed on the encoding genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The expression levels of miR‑486‑5p were consistently downregulated in PTC compared with in normal tissue across datasets from TCGA, GEO (GSE40807, GSE62054 and GSE73182) and ArrayExpress (E‑MTAB‑736). The results also demonstrated that miR‑486‑5p expression was associated with cancer stage (P=0.003), pathologic lymph node (P=0.047), metastasis (P=0.042), neoplasm (P=0.012) and recurrence (P=0.016) in patients with PTC. In addition, low expression of miR‑486‑5p in patients with PTC was associated with a worse overall survival. A total of 80 miR‑486‑5p‑related genes were observed from at least 9 of 12 prediction platforms, and these were involved in 'hsa05200: Pathways in cancer' and 'hsa05206: MicroRNAs in cancer'. Finally, three hub genes, CRK like proto‑oncogene, phosphatase and tensin homolog and tropomyosin 3, were identified as important candidates in tumorigenesis and progression of PTC. In conclusion, it may be hypothesized that miR‑486‑5p contributes towards PTC onset and progression, and may act as a clinical target. However, in vitro and in vivo experiments are required to validate the findings of the present study.
Collapse
Affiliation(s)
- Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deng-Hua Pan
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiu-Yan Mo
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun-Peng Wei
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Huan Luo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|