1
|
Subramaniyam K, Harihar S. An Overview on the Emerging Role of the Plasma Protease Inhibitor Protein ITIH5 as a Metastasis Suppressor. Cell Biochem Biophys 2024; 82:399-409. [PMID: 38355846 DOI: 10.1007/s12013-024-01227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Most cancers are not detected until they have progressed to the point of becoming malignant and life-threatening. Chemotherapy and conventional medicines are often ineffective against cancer. Although we have made significant progress, new conceptual discoveries are still required to investigate new treatments. The role of metastasis suppressor genes as a therapeutic option for limiting tumor progression and metastasis has been on the anvil for some time. In this review, we discuss the role of ITIH5 as a metastasis suppressor gene and catalog its involvement in different cancers. We further shed light on the mode of action of ITIH5 based on the available data. The review will provide a new perspective on ITIH5 as an anti-metastatic protein and hopefully serve as an impetus for future studies towards the application of ITIH5 for clinical intervention in targeting metastatic cancers.
Collapse
Affiliation(s)
- Krishnaveni Subramaniyam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
2
|
Gil-Gas C, Sánchez-Díez M, Honrubia-Gómez P, Sánchez-Sánchez JL, Alvarez-Simón CB, Sabater S, Sánchez-Sánchez F, Ramírez-Castillejo C. Self-Renewal Inhibition in Breast Cancer Stem Cells: Moonlight Role of PEDF in Breast Cancer. Cancers (Basel) 2023; 15:5422. [PMID: 38001682 PMCID: PMC10670784 DOI: 10.3390/cancers15225422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the leading cause of death among females in developed countries. Although the implementation of screening tests and the development of new therapies have increased the probability of remission, relapse rates remain high. Numerous studies have indicated the connection between cancer-initiating cells and slow cellular cycle cells, identified by their capacity to retain long labeling (LT+). In this study, we perform new assays showing how stem cell self-renewal modulating proteins, such as PEDF, can modify the properties, percentage of biomarker-expressing cells, and carcinogenicity of cancer stem cells. The PEDF signaling pathway could be a useful tool for controlling cancer stem cells' self-renewal and therefore control patient relapse, as PEDF enhances resistance in breast cancer patient cells' in vitro culture. We have designed a peptide consisting of the C-terminal part of this protein, which acts by blocking endogenous PEDF in cell culture assays. We demonstrate that it is possible to interfere with the self-renewal capacity of cancer stem cells, induce anoikis in vivo, and reduce resistance against docetaxel treatment in cancer patient cells in in vitro culture. We have also demonstrated that this modified PEDF protein produces a significant decrease in the percentage of expressed cancer stem cell markers.
Collapse
Affiliation(s)
- Carmen Gil-Gas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Marta Sánchez-Díez
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Paloma Honrubia-Gómez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
| | - Jose Luis Sánchez-Sánchez
- Oncology Unit, Hospital General de Almansa, 02640 Albacete, Spain;
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Carmen B. Alvarez-Simón
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (C.G.-G.); (P.H.-G.)
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastia Sabater
- Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Francisco Sánchez-Sánchez
- Laboratory of Medical Genetic, Faculty of Medicine, Instituto de Investigaciones en Discapacidades Neurológicas (IDINE), University of Castilla La-Mancha, 02006 Albacete, Spain
| | - Carmen Ramírez-Castillejo
- HST Group, Department Biotechnology-BV, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Oncology Group, Instituto de Investigación Sanitaria San Carlos, 28040 Madrid, Spain
| |
Collapse
|
3
|
Azimi A, Patrick E, Teh R, Kim J, Fernandez-Penas P. Proteomic profiling of cutaneous melanoma explains the aggressiveness of distant organ metastasis. Exp Dermatol 2023. [PMID: 37082900 DOI: 10.1111/exd.14814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/22/2023]
Abstract
Despite recent developments in managing metastatic melanomas, patients' overall survival remains low. Therefore, the current study aims to understand better the proteome-wide changes associated with melanoma metastasis that will assist with identifying targeted therapies. The latest development in mass spectrometry-based proteomics, together with extensive bioinformatics analysis, was used to investigate the molecular changes in 60 formalin-fixed and paraffin-embedded samples of primary and lymph nodes (LN) and distant organ metastatic melanomas. A total of 4631 proteins were identified, of which 72 and 453 were significantly changed between the LN and distant organ metastatic melanomas compared to the primary lesions (adj. p-value <0.05). An increase in proteins such as SLC9A3R1, CD20 and GRB2 and a decrease in CST6, SERPINB5 and ARG1 were associated with regional LN metastasis. By contrast, increased metastatic activities in distant organ metastatic melanomas were related to higher levels of CEACAM1, MC1R, AKT1 and MMP3-9 and decreased levels of CDKN2A, SDC1 and SDC4 proteins. Furthermore, machine learning analysis classified the lesions with up to 92% accuracy based on their metastatic status. The findings from this study provide up to date proteome-level information about the progression of melanomas to regional LN and distant organs, leading to the identification of protein signatures with potential for clinical translation.
Collapse
Affiliation(s)
- Ali Azimi
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Ellis Patrick
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Camperdown, New South Wales, Australia
- Sydney Precision Data Science Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Rachel Teh
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Jennifer Kim
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Pablo Fernandez-Penas
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Department of Dermatology, Westmead Hospital, Westmead, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
4
|
Balkrishna A, Mittal R, Arya V. Unveiling Role of MicroRNAs in Metastasizing Triple Negative Breast Cancer: From Therapeutics to Delivery. Curr Drug Targets 2023; 24:509-520. [PMID: 36892021 DOI: 10.2174/1389450124666230308154551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Triple negative breast cancers are malignant, heterogeneous tumors with high histological grades, increased reoccurrence, and cancer-related death rates. TNBC metastasis to the brain, lungs, liver, and lymph nodes is a complex process regulated by epithelial to mesenchymal transition, intravasation, extravasation, stem cell niche, and migration. Aberrant expression of miRNAs, also known as a transcriptional regulators of genes, may function as oncogenes or tumor suppressors. In this review, we systematically elucidated the biogenesis and tumor suppressor role of miRNA in targeting distant metastasis of TNBC cells and the above-mentioned underlying mechanisms involved in complicating the disease. Apart from their therapeutic implications, the emerging roles of miRNAs as prognostic markers have also been discussed. To overcome delivery bottlenecks, RNA nanoparticles, nano-diamonds, exosomes, and mesoporous silica nanoparticle-mediated delivery of miRNAs have been contemplated. Altogether, the present review article uncovers the potential role of miRNA in antagonizing distant metastasis of TNBC cells, and highlights their clinical significance as prognostic markers and possible drug delivery strategies to enhance the likely outcome of miRNA-based therapy against the disease.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
5
|
Tripathi PH, Akhtar J, Arora J, Saran RK, Mishra N, Polisetty RV, Sirdeshmukh R, Gautam P. Quantitative proteomic analysis of GnRH agonist treated GBM cell line LN229 revealed regulatory proteins inhibiting cancer cell proliferation. BMC Cancer 2022; 22:133. [PMID: 35109816 PMCID: PMC8812247 DOI: 10.1186/s12885-022-09218-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 01/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) receptor, a rhodopsin-like G-protein coupled receptor (GPCR) family member involved in GnRH signaling, is reported to be expressed in several tumors including glioblastoma multiforme (GBM), one of the most malignant and aggressive forms of primary brain tumors. However, the molecular targets associated with GnRH receptor are not well studied in GBM or in other cancers. The present study aims at investigating the effect of GnRH agonist (Gosarelin acetate) on cell proliferation and associated signaling pathways in GBM cell line, LN229. METHODS LN229 cells were treated with different concentrations of GnRH agonist (10-10 M to 10-5 M) and the effect on cell proliferation was analyzed by cell count method. Further, total protein was extracted from control and GnRH agonist treated cells (with maximum reduction in cell proliferation) followed by trypsin digestion, labeling with iTRAQ reagents and LC-MS/MS analysis to identify differentially expressed proteins. Bioinformatic analysis was performed for annotation of proteins for the associated molecular function, altered pathways and network analysis using STRING database. RESULTS The treatment with different concentrations of GnRH agonist showed a reduction in cell proliferation with a maximum reduction of 48.2% observed at 10-6 M. Quantitative proteomic analysis after GnRH agonist treatment (10-6 M) led to the identification of a total of 29 differentially expressed proteins with 1.3-fold change (23 upregulated, such as, kininogen-1 (KNG1), alpha-2-HS-glycoprotein (AHSG), alpha-fetoprotein (AFP), and 6 downregulated, such as integrator complex subunit 11 (CPSF3L), protein FRG1 (FRG1). Some of them are known [KNG1, AHSG, AFP] while others such as inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2), ITIH4, and LIM domain-containing protein 1 (LIMD1) are novel to GnRH signaling pathway. Protein-protein interaction analysis showed a direct interaction of KNG1, a hub molecule, with GnRH, GnRH receptor, EGFR and other interactors including ITIH2, ITIH4 and AHSG. Overexpression of KNG1 after GnRH agonist treatment was validated using Western blot analysis, while a significant inhibition of EGFR was observed after GnRH agonist treatment. CONCLUSIONS The study suggests a possible link of GnRH signaling with EGFR signaling pathways likely via KNG1. KNG1 inhibitors may be investigated independently or in combination with GnRH agonist for therapeutic applications.
Collapse
Affiliation(s)
- Priyanka H Tripathi
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Symbiosis International (Deemed University), Pune, 412115, India
| | - Javed Akhtar
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.,Jamia Hamdard- Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Jyoti Arora
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India
| | - Ravindra Kumar Saran
- Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, 110002, India
| | - Neetu Mishra
- Symbiosis International (Deemed University), Pune, 412115, India
| | - Ravindra Varma Polisetty
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, 110021, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, ICMR- National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, 110029, India.
| |
Collapse
|
6
|
Rose M, Huth S, Wiesehöfer M, Ehling J, Henkel C, Steitz J, Lammers T, Kistermann J, Klaas O, Koch M, Rushrush S, Knüchel R, Dahl E. ITIH5-Derived Polypeptides Covering the VIT Domain Suppress the Growth of Human Cancer Cells In Vitro. Cancers (Basel) 2022; 14:cancers14030488. [PMID: 35158755 PMCID: PMC8833355 DOI: 10.3390/cancers14030488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Oncogenic drivers such as mutated EGFR are the preferred targets in modern drug development. However, restoring the lost function of tumor suppressor proteins could also be a valid approach to combatting cancer. ITIH5 has been revealed as a potent metastasis suppressor in both breast and pancreatic cancer. Here, we show that ITIH5 overexpression in MDA-MB-231 breast cancer cells can also locally suppress tumor growth by 85%, when transplanted into the mammary fat pad of nude mice. For a potential drug development approach, we further aimed to define downsized ITIH5 polypeptides that still are capable of mediating growth inhibitory effects. By cloning truncated and His-tagged ITIH5 fragments, we synthesized two recombinant N-terminal polypeptides (ITIH5681aa and ITIH5161aa), both covering the ITI heavy chain specific “vault protein inter-alpha-trypsin” (VIT) domain. Truncated ITIH5 variants caused dose-dependent cell growth inhibition by up to 50% when applied to various cancer cell lines (e.g., MDA-MB-231, SCaBER, A549) reflecting breast, bladder and lung cancer in vitro. Thus, our data suggest the substantial role of the ITIH5-specific VIT domain in ITIH5-mediated suppression of tumor cell proliferation. As extracellularly administered ITIH5 peptides mimic the growth-inhibitory effects of the full-length ITIH5 tumor suppressor protein, they may constitute the basis for developing anticancer drugs in the future.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
- Correspondence: (M.R.); (E.D.); Tel.: +49-241-80-89715 (M.R.); +49-241-80-88431 (E.D.); Fax: +49-241-8082439 (M.R. & E.D.)
| | - Sebastian Huth
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
- Department of Dermatology and Allergology, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Wiesehöfer
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
| | - Josef Ehling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany; (J.E.); (T.L.)
| | - Corinna Henkel
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
- Bruker Daltonik GmbH, 28359 Bremen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, University Hospital, RWTH Aachen University, 52074 Aachen, Germany;
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074 Aachen, Germany; (J.E.); (T.L.)
| | - Jennifer Kistermann
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
| | - Oliver Klaas
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
| | - Maximilian Koch
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
| | - Sandra Rushrush
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
| | - Ruth Knüchel
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, RWTH Aachen University, 52074 Aachen, Germany; (S.H.); (M.W.); (C.H.); (J.K.); (O.K.); (M.K.); (S.R.); (R.K.)
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), 52074 Aachen, Germany
- Correspondence: (M.R.); (E.D.); Tel.: +49-241-80-89715 (M.R.); +49-241-80-88431 (E.D.); Fax: +49-241-8082439 (M.R. & E.D.)
| |
Collapse
|
7
|
Gallorini M, Carradori S. Understanding collagen interactions and their targeted regulation by novel drugs. Expert Opin Drug Discov 2021; 16:1239-1260. [PMID: 34034595 DOI: 10.1080/17460441.2021.1933426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Among protein and fibers in the extracellular matrix (ECM), collagen is the most copious and widely employed in cosmetic, food, pharmaceutical, and biomedical industries due to its extensive biocompatible and versatile properties. In the last years, the knowledge about functions of collagens increased and expanded dramatically. Once considered only crucial for the ECM scaffolding and mechanotransduction, additional functional roles have now been ascribed to the collagen superfamily which are defined by other recently discovered domains, supramolecular assembly and receptors.Areas covered: Given the importance of each step in the collagen biosynthesis, folding and signaling, medicinal chemists have explored small molecules, peptides, and monoclonal antibodies to modulate enzymes, receptors and interactions with the physiological ligands of collagen. These compounds were also explored toward diseases and pathological conditions. The authors discuss this providing their expert perspectives on the subject area.Expert opinion: Understanding collagen protein properties and its interactome is beneficial for therapeutic drug design. Nevertheless, compounds targeting collagen-based interactome suffered from the presence of different isoforms for each target and the lack of specific 3D crystal structures able to guide properly drug design.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Qiu W, Wang Z, Chen R, Shi H, Ma Y, Zhou H, Li M, Li W, Chen H, Zhou H. Xiaoai Jiedu Recipe suppresses hepatocellular carcinogenesis through the miR-200b-3p /Notch1 axis. Cancer Manag Res 2020; 12:11121-11131. [PMID: 33173345 PMCID: PMC7646463 DOI: 10.2147/cmar.s269991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Xiaoai Jiedu recipe (XJR), a formula long used by Chinese National Medical Professor Zhou Zhongying, has potent antitumor properties, but the molecular mechanism is still unclear. The aim of the study was to investigate the antitumor mechanism of XJR on hepatocellular carcinoma (HCC) by focusing on miRNA. Methods Three concentrations of XJR (low, middle, and high) were used to treat tumor xenograft mice models. Microarray technology was used to identify the differential expressed genes after XJR treatment, and bioinformatic tools and luciferase reporter assay to predict the potential pathways. HepG2 cells were transfected with inhibitor of miR-200b-3p to detect the effect of miR-200b-3p and Notch1 on tumor growth. Results XJR effectively exerted anti-HCC effect both in vitro and in vivo. MiRNA chip analysis results showed that the expression of 75 miRNAs was upregulated and 158 miRNAs was downregulated in blood from XJR-treated mice. Further validation by using real-time polymerase chain reaction (RT-PCR) assay showed that the expression of five miRNAs (miR-453, miR-200b-3p, miR-135a-1-3p, miR-1960, miR-378a-5p, and miR-466f) was consistent with the results of miRNA chip analysis. Among them, miR-200b-3p was selected as candidate for further research. Results of the MTT, migration, and wound healing assays showed that down-expression of miR-200b-3p abrogated the effect of XJR on cell growth and metastasis. Luciferase reporter assay confirmed that Notch1 was the direct target of miR-200b-3p. XJR significantly decreased Notch1 expression in HepG2 cells, whereas miR-200B-3p inhibitor abrogated the XJR-induced decrease in Notch1 expression. Conclusion This study indicated that XJR could effectively inhibit HCC and might exert its antitumor effect through the miR‐200b-3p/Notch1 axis. These findings provided new avenues for the use of XJR for prevention and treatment of HCC.
Collapse
Affiliation(s)
- Wenli Qiu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Haibo Shi
- Department of Oncology, Wuxi Xishan Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, Republic of China
| | - Yanxia Ma
- Institute of Oncology, The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Hongli Zhou
- The First Clinical Medical College, Liaoning University of Chinese Medicine, Shenyang, Liaoning, Republic of China
| | - Muhan Li
- Institute of Oncology, The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Wenting Li
- Institute of Oncology, The First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, Republic of China
| |
Collapse
|
9
|
Maspin, Syndecan-1, and Ki-67 in the Odontogenic Keratocyst: An Immunohistochemical Analysis. Int J Dent 2020; 2020:7041520. [PMID: 32733563 PMCID: PMC7376412 DOI: 10.1155/2020/7041520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
The odontogenic keratocyst (OKC) is a controversial lesion that was reclassified as a tumor with the name “keratocystic odontogenic tumor” in 2005. The reclassification was revoked recently in 2017, with a conclusion on the need for further studies on the subject. In this study, the expressions of an important regulatory protein (maspin), an important integral membrane proteoglycan (syndecan-1), and a universal proliferation marker (Ki-67) in the epithelium of the OKC were investigated in comparison with the dentigerous cyst (DC) and ameloblastoma (AB). Twenty-six OKCs, eleven DCs, and ten conventional ABs were immunohistochemically stained for maspin, syndecan-1, and Ki-67. ImageJ was used to analyze the positivity of maspin and syndecan-1. The Ki-67 score was calculated as the percentage of positive nuclei in 5 high power fields. Analysis of variance (ANOVA) test and Student t-test were used as appropriate. Lower expressions of maspin were noted in OKC and DC compared to those in AB, and lower expressions of syndecan-1 were noted in OKC and AB compared to those in DC. The differences, however, did not reach statistical significance (ANOVA and t-test: P > 0.05). The Ki-67 score was significantly higher in OKC than in DC (t-test: P < 0.05), and not significantly different from AB (t-test: P > 0.05). In conclusion, expressions of maspin and syndecan-1 are not strongly representative of differences in behavior between OKC, AB, and DC. However, the expression of Ki-67 indicates comparable proliferative activities of OKC and AB, which are higher than that of DC. Further investigation on the biologic behavior of OKC is still recommended to arrive at more specific conclusions regarding its classification.
Collapse
|
10
|
Schwarz N, Tumpara S, Wrenger S, Ercetin E, Hamacher J, Welte T, Janciauskiene S. Alpha1-antitrypsin protects lung cancer cells from staurosporine-induced apoptosis: the role of bacterial lipopolysaccharide. Sci Rep 2020; 10:9563. [PMID: 32533048 PMCID: PMC7293251 DOI: 10.1038/s41598-020-66825-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of plasma alpha1-antitrypsin (AAT) correlate with a poor prognosis of various cancers. Herein, we investigated effects of exogenous AAT on non-small lung cancer cell lines with high (H1975) and very low (H661) baseline expression of SERPINA1 gene encoding AAT protein. Comparison of cells grown for 3 weeks in a regular medium versus medium supplemented with 2 mg/ml of AAT revealed that in the presence of AAT cells acquire better proliferative properties, resistance to staurosporine (STS)-induced apoptosis, and show higher expression of CLU, a pro-tumorigenic gene coding clusterin protein. Similarly, the co-administration of STS with AAT or addition of AAT to the cells pre-treated with STS abrogated effects of STS in both cell lines. Following experiments with H1975 cells have shown that AAT blocks critical steps in STS-induced cell death: inhibition of AKT/MAPK pathways, and activation of caspase 3 and autophagy. AAT does not inhibit apoptosis-triggered by chloroquine (inhibitor of autophagy) or streptonigrin (inducer of p53 pathway). The anti-apoptotic effects of AAT were unaffected by lipopolysaccharide (LPS). However, AAT induced TLR4 levels and enhanced LPS effects on the production of IL-6, a tumor-promoting cytokine. Our data provide further evidence that AAT plays a significant role in the tumorigenesis.
Collapse
Affiliation(s)
- Natalie Schwarz
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625, Hannover, Germany
| | - Srinu Tumpara
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625, Hannover, Germany
| | - Sabine Wrenger
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625, Hannover, Germany
| | - Evrim Ercetin
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625, Hannover, Germany
| | - Jürg Hamacher
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012, Bern, Switzerland.,Lungen-und Atmungsstiftung, Bern, 3012, Bern, Switzerland
| | - Tobias Welte
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Internal Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
11
|
Yousefi M, Dehghani S, Nosrati R, Ghanei M, Salmaninejad A, Rajaie S, Hasanzadeh M, Pasdar A. Current insights into the metastasis of epithelial ovarian cancer - hopes and hurdles. Cell Oncol (Dordr) 2020; 43:515-538. [PMID: 32418122 DOI: 10.1007/s13402-020-00513-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic cancer and the fifth leading cause of cancer-related mortality in women worldwide. Despite various attempts to improve the diagnosis and therapy of ovarian cancer patients, the survival rate for these patients is still dismal, mainly because most of them are diagnosed at a late stage. Up to 90% of ovarian cancers arise from neoplastic transformation of ovarian surface epithelial cells, and are usually referred to as epithelial ovarian cancer (EOC). Unlike most human cancers, which are disseminated through blood-borne metastatic routes, EOC has traditionally been thought to be disseminated through direct migration of ovarian tumor cells to the peritoneal cavity and omentum via peritoneal fluid. It has recently been shown, however, that EOC can also be disseminated through blood-borne metastatic routes, challenging previous thoughts about ovarian cancer metastasis. CONCLUSIONS Here, we review our current understanding of the most updated cellular and molecular mechanisms underlying EOC metastasis and discuss in more detail two main metastatic routes of EOC, i.e., transcoelomic metastasis and hematogenous metastasis. The emerging concept of blood-borne EOC metastasis has led to exploration of the significance of circulating tumor cells (CTCs) as novel and non-invasive prognostic markers in this daunting cancer. We also evaluate the role of tumor stroma, including cancer associated fibroblasts (CAFs), tumor associated macrophages (TAMs), endothelial cells, adipocytes, dendritic cells and extracellular matrix (ECM) components in EOC growth and metastasis. Lastly, we discuss therapeutic approaches for targeting EOC. Unraveling the mechanisms underlying EOC metastasis will open up avenues to the design of new therapeutic options. For instance, understanding the molecular mechanisms involved in the hematogenous metastasis of EOC, the biology of CTCs, and the detailed mechanisms through which EOC cells take advantage of stromal cells may help to find new opportunities for targeting EOC metastasis.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Halal Research Center of IRI, FDA, Tehran, Iran
| | - Sara Rajaie
- Department of Biology, Islamic Azad University, Arsanjan Branch, Arsanjan, Iran
| | - Malihe Hasanzadeh
- Department of Gynecologic Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
12
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Revelation of Proteomic Indicators for Colorectal Cancer in Initial Stages of Development. Molecules 2020; 25:molecules25030619. [PMID: 32023884 PMCID: PMC7036866 DOI: 10.3390/molecules25030619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Colorectal cancer (CRC) at a current clinical level is still hardly diagnosed, especially with regard to nascent tumors, which are typically asymptotic. Searching for reliable biomarkers of early diagnosis is an extremely essential task. Identification of specific post-translational modifications (PTM) may also significantly improve net benefits and tailor the process of CRC recognition. We examined depleted plasma samples obtained from 41 healthy volunteers and 28 patients with CRC at different stages to conduct comparative proteome-scaled analysis. The main goal of the study was to establish a constellation of protein markers in combination with their PTMs and semi-quantitative ratios that may support and realize the distinction of CRC until the disease has a poor clinical manifestation. Results: Proteomic analysis revealed 119 and 166 proteins for patients in stages I–II and III–IV, correspondingly. Plenty of proteins (44 proteins) reflected conditions of the immune response, lipid metabolism, and response to stress, but only a small portion of them were significant (p < 0.01) for distinguishing stages I–II of CRC. Among them, some cytokines (Clusterin (CLU), C4b-binding protein (C4BP), and CD59 glycoprotein (CD59), etc.) were the most prominent and the lectin pathway was specifically enhanced in patients with CRC. Significant alterations in Inter-alpha-trypsin inhibitor heavy chains (ITIH1, ITIH2, ITIH3, and ITIH4) levels were also observed due to their implication in tumor growth and the malignancy process. Other markers (Alpha-1-acid glycoprotein 2 (ORM2), Alpha-1B-glycoprotein (A1BG), Haptoglobin (HP), and Leucine-rich alpha-2-glycoprotein (LRG1), etc.) were found to create an ambiguous core involved in cancer development but also to exactly promote tumor progression in the early stages. Additionally, we identified post-translational modifications, which according to the literature are associated with the development of colorectal cancer, including kininogen 1 protein (T327-p), alpha-2-HS-glycoprotein (S138-p) and newly identified PTMs, i.e., vitamin D-binding protein (K75-ac and K370-ac) and plasma protease C1 inhibitor (Y294-p), which may also contribute and negatively impact on CRC progression. Conclusions: The contribution of cytokines and proteins of the extracellular matrix is the most significant factor in CRC development in the early stages. This can be concluded since tumor growth is tightly associated with chronic aseptic inflammation and concatenated malignancy related to loss of extracellular matrix stability. Due attention should be paid to Apolipoprotein E (APOE), Apolipoprotein C1 (APOC1), and Apolipoprotein B-100 (APOB) because of their impact on the malfunction of DNA repair and their capability to regulate mTOR and PI3K pathways. The contribution of the observed PTMs is still equivocal, but a significant decrease in the likelihood between modified and native proteins was not detected confidently.
Collapse
|
14
|
Criscitiello MF, Kraev I, Lange S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol Immunol 2020; 117:37-53. [PMID: 31733447 PMCID: PMC7112542 DOI: 10.1016/j.molimm.2019.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/05/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Peptidylarginine deiminases (PADs) are phylogenetically conserved calcium-dependent enzymes which post-translationally convert arginine into citrulline in target proteins in an irreversible manner, causing functional and structural changes in target proteins. Protein deimination causes generation of neo-epitopes, affects gene regulation and also allows for protein moonlighting. Furthermore, PADs have been found to be a phylogenetically conserved regulator for extracellular vesicle (EVs) release. EVs are found in most body fluids and participate in cellular communication via transfer of cargo proteins and genetic material. In this study, post-translationally deiminated proteins in serum and serum-EVs are described for the first time in camelids, using the llama (Lama glama L. 1758) as a model animal. We report a poly-dispersed population of llama serum EVs, positive for phylogenetically conserved EV-specific markers and characterised by TEM. In serum, 103 deiminated proteins were overall identified, including key immune and metabolic mediators including complement components, immunoglobulin-based nanobodies, adiponectin and heat shock proteins. In serum, 60 deiminated proteins were identified that were not in EVs, and 25 deiminated proteins were found to be unique to EVs, with 43 shared deiminated protein hits between both serum and EVs. Deiminated histone H3, a marker of neutrophil extracellular trap formation, was also detected in llama serum. PAD homologues were identified in llama serum by Western blotting, via cross reaction with human PAD antibodies, and detected at an expected 70 kDa size. This is the first report of deiminated proteins in serum and EVs of a camelid species, highlighting a hitherto unrecognized post-translational modification in key immune and metabolic proteins in camelids, which may be translatable to and inform a range of human metabolic and inflammatory pathologies.
Collapse
Affiliation(s)
- Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, 77843, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK.
| |
Collapse
|
15
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|