1
|
Liu Y, Huang H, Fu J, Zhang Y, Xu J, Zhang L, Sun S, Zhao L, Zhang D, Onwuka JU, Sun H, Cui B, Zhao Y. Colorectal cancer patients with CASK promotor heterogeneous and homogeneous methylation display different prognosis. Aging (Albany NY) 2020; 12:20561-20586. [PMID: 33113509 PMCID: PMC7655177 DOI: 10.18632/aging.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Homogenous DNA methylation clearly affects clinical outcomes. However, less is known about the effects of heterogeneous methylation. We aimed to investigate the different effects between CASK promoter methylation heterogeneity and homogeneity on colorectal cancer (CRC) patients' prognosis. The methylation status of CASK in 296 tumor tissues and 255 adjacent normal tissues were evaluated using Methylation-sensitive high-resolution melting (MS-HRM). Digital MS-HRM (dMS-HRM) visualized heterogeneous methylation and subsequent sequencing provided exact patterns. Log-rank test and Cox regression model were adopted to assess the association between CASK methylation status and CRC prognosis with propensity score (PS) method to control confounding biases. Heterogeneous methylation was detected in both tumor (52.2%) and non-neoplastic tissue surrounding the tumor (62.4%). It occurred more frequently in lower levels of tumor invasion (P = 0.002) and male patients (P < 0.001). Compared with heterogeneous methylation, patients with CASK homogeneous methylation presented poorer overall survival (OS) (HR: 1.919, 95% CI: 1.146-3.212, P = 0.013) and disease-free survival (DFS) (HR: 1.913, 95% CI: 1.146-3.194, P = 0.013). This unfavorable effect still existed among older (≥ 50), Dukes staging C/D, and rectal cancer patients. MS-HRM and dMS-HRM when combined can assess the degree and complexity of heterogeneous methylation with a visible pattern.
Collapse
Affiliation(s)
- Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Simin Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Liyuan Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Justina Ucheojor Onwuka
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Binbin Cui
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Nangang District, Harbin 150086, Heilongjiang Province, The People’s Republic of China
| |
Collapse
|
2
|
Clinical Significance of Expression Changes and Promoter Methylation of PLA2R1 in Tissues of Breast Cancer Patients. Int J Mol Sci 2020; 21:ijms21155453. [PMID: 32751713 PMCID: PMC7432085 DOI: 10.3390/ijms21155453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/30/2022] Open
Abstract
Phospholipase A2 receptor 1 (PLA2R1) expression and its role in the initiation and progression of breast cancer are an unresolved issue. PLA2R1 was found to endorse several tumor suppressive responses, including cellular senescence and apoptosis. Previous in vitro studies demonstrated that DNA hypermethylation was highly associated with the epigenetic silencing of PLA2R1 in breast cancer cell lines. Our objective was to study the level of PLA2R1 mRNA expression and the methylation of its promoter in different histological grades and molecular subtypes of breast cancer. We performed bioinformatics analyses on available human breast cancer expression datasets to assess the PLA2R1 mRNA expression. We used qRT-PCR to evaluate the PLA2R1 mRNA expression and its promoter’s methylation in breast cancer tissue in comparison to breast fibroadenomas. Our results describe, for the first time, the expression of PLA2R1 and the methylation of its promoter in human breast cancer tissues. A significant downregulation of PLA2R1, together with hypermethylation of the promoter was detected in breast cancers of different histological grades and molecular subtypes when compared to benign breast tissues. PLA2R1 promoter hypermethylation was associated with aggressive subtypes of breast cancer. In conclusion, PLA2R1 promoter hypermethylation is a potentially useful diagnostic and prognostic biomarker and could serve as a possible therapeutic target in breast cancer.
Collapse
|
3
|
Laurito S, Branham MT, Campoy E, Real S, Cueto J, Urrutia G, Gago F, Tello O, Glatstein T, De la Iglesia P, Atanesyan L, Savola S, Roqué M. Working together for the family: determination of HER oncogene co-amplifications in breast cancer. Oncotarget 2020; 11:2774-2792. [PMID: 32733648 PMCID: PMC7367656 DOI: 10.18632/oncotarget.27671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/20/2020] [Indexed: 11/25/2022] Open
Abstract
HER2 is a well-studied tyrosine kinase (TK) membrane receptor which functions as a therapeutic target in invasive ductal breast carcinomas (IDC). The standard of care for the treatment of HER2-positive breast is the antibody trastuzumab. Despite specific treatment unfortunately, 20% of primary and 70% of metastatic HER2 tumors develop resistance. HER2 belongs to a gene family, with four members (HER1-4) and these members could be involved in resistance to anti-HER2 therapies. In this study we designed a probemix to detect the amplification of the four HER oncogenes in a single reaction. In addition, we developed a protocol based on the combination of MLPA with ddPCR to detect the tumor proportion of co-amplified HERs. On 111 IDC, the HER2 MLPA results were validated by FISH (Adjusted r 2 = 0,91, p < 0,0001), CISH (Adjusted r 2 = 0,938, p < 0,0001) and IHC (Adjusted r 2 = 0,31, p < 0,0001). HER1-4 MLPA results were validated by RT-qPCR assays (Spearman Rank test p < 0,05). Of the 111 samples, 26% presented at least one HER amplified, of which 23% showed co-amplifications with other HERs. The percentage of cells with HER2 co-amplified varied among the tumors (from 2-72,6%). Independent in-silico findings show that the outcome of HER2+ patients is conditioned by the status of HER3 and HER4. Our results encourage further studies to investigate the relationship with patient's response to single or combined treatment. The approach could serve as proof of principle for other tumors in which the HER oncogenes are involved.
Collapse
Affiliation(s)
- Sergio Laurito
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - María Teresita Branham
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina
| | - Emanuel Campoy
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Sebastián Real
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Juan Cueto
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Mendoza, Argentina
| | - Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Olga Tello
- Instituto Gineco-Mamario, Mendoza, Argentina
| | | | | | - Lilit Atanesyan
- MRC-Holland BV, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Suvi Savola
- MRC-Holland BV, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Maria Roqué
- Institute of Histology and Embryology, National Council of Research, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| |
Collapse
|
4
|
Friedemann M, Gutewort K, Thiem D, Nacke B, Jandeck C, Lange BS, Sukocheva O, Suttorp M, Menschikowski M. Methylation of the Phospholipase A2 Receptor 1 Promoter Region in Childhood B Cell Acute Lymphoblastic Leukaemia. Sci Rep 2020; 10:9058. [PMID: 32493972 PMCID: PMC7270080 DOI: 10.1038/s41598-020-65825-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common form of paediatric cancer and epigenetic aberrations are determinants of leukaemogenesis. The aim of this study was to investigate the methylation degree of a distinct phospholipase A2 receptor 1 (PLA2R1) promoter region in paediatric ALL patients and to evaluate its relevance as new biomarker for monitoring treatment response and burden of residual disease. The impact of PLA2R1 re-expression on proliferative parameters was assessed in vitro in Jurkat cells with PLA2R1 naturally silenced by DNA methylation. Genomic DNA was isolated from bone marrow (BM) and peripheral blood (PB) of 44 paediatric ALL patients. PLA2R1 methylation was analysed using digital PCR and compared to 20 healthy controls. Transfected Jurkat cells were investigated using cell growth curve analysis and flow cytometry. PLA2R1 was found hypermethylated in BM and PB from pre-B and common ALL patients, and in patients with the disease relapse. PLA2R1 methylation decreased along with leukaemic blast cell reduction during ALL induction treatment. In vitro analysis revealed an anti-proliferative phenotype associated with PLA2R1 re-expression, suggesting a tumour-suppressive function of PLA2R1. Collected data indicates that PLA2R1 promoter methylation quantitation can be used as biomarker for ALL induction treatment control, risk stratification, and early detection of ALL relapse.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Dana Thiem
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Brit Nacke
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Björn Sönke Lange
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany
| | - Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, 5042, Australia
| | - Meinolf Suttorp
- Medical Faculty, Paediatric Haemato-Oncology, Technical University, 01307, Dresden, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307, Dresden, Germany.
| |
Collapse
|
5
|
Menschikowski M, Jandeck C, Friedemann M, Nacke B, Hantsche S, Tiebel O, Sukocheva O, Hagelgans A. Identification of rare levels of methylated tumor DNA fragments using an optimized bias based pre-amplification-digital droplet PCR (OBBPA-ddPCR). Oncotarget 2018; 9:36137-36150. [PMID: 30546833 PMCID: PMC6281424 DOI: 10.18632/oncotarget.26315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The analysis of aberrant DNA methylations is used for the diagnosis of cancer as significant changes in the gene methylation pattern are often detected during early carcinogenesis. In this study, we evaluated the performance of a two-step method that combines pre-amplification with ddPCR technique. RESULTS By using ddPCR, the dependence of amplification efficiency for methylated and unmethylated DNA fragments on the relevant MgCl2 concentration and the annealing temperature was established in addition to the primer design. We found that the efficiency can be adjusted toward methylated sequences by using primers covering one to four CpG sites under appropriately selected MgCl2 concentration and annealing temperature. Applying a PCR bias between 85% and 95%, five copies of methylated tumor DNA fragments were detected against a background of 700,000 copies of unmethylated DNA fragments with a high signal-to-noise ratio. The analysis of serum samples from patients with prostate cancer showed a significantly improved performance of the new method in comparison with the MS-HRM technique, ddPCR alone, or ddPCR in combination with an unbiased pre-amplification using methylation-independent primers. CONCLUSIONS We define this method as an optimized bias-based pre-amplification-digital droplet PCR (OBBPA-ddPCR) technique. This novel method is recommended for the early detection of cancer-specific DNA methylation biomarkers in the form of a liquid biopsy.
Collapse
Affiliation(s)
- Mario Menschikowski
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Carsten Jandeck
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Markus Friedemann
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Brit Nacke
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Saskia Hantsche
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Oliver Tiebel
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| | - Olga Sukocheva
- 2 School of Health Sciences, Flinders University of South Australia, Adelaide, Australia
| | - Albert Hagelgans
- 1 Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technical University of Dresden, Dresden, Germany
| |
Collapse
|