1
|
Panagopoulos I, Andersen K, Johannsdottir IMR, Tandsæther MR, Micci F, Heim S. Genetic Characterization of Pediatric Mixed Phenotype Acute Leukemia (MPAL). Cancer Genomics Proteomics 2024; 21:1-11. [PMID: 38151288 PMCID: PMC10756350 DOI: 10.21873/cgp.20424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND/AIM Mixed phenotype acute leukemia (MPAL) is a rare hematologic malignancy in which the leukemic cells cannot be assigned to any specific lineage. The lack of well-defined, pathogenetically relevant diagnostic criteria makes the clinical handling of MPAL patients challenging. We herein report the genetic findings in bone marrow cells from two pediatric MPAL patients. PATIENTS AND METHODS Bone marrow cells were examined using G-banding, array comparative genomic hybridization, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization. RESULTS In the first patient, the genetic analyses revealed structural aberrations of chromosomal bands 8p11, 10p11, 11q21, and 17p11, the chimeras MLLT10::PICALM and PICALM::MLLT10, and imbalances (gains/losses) on chromosomes 2, 4, 8, 13, and 21. A submicroscopic deletion in 21q was also found including the RUNX1 locus. In the second patient, there were structural aberrations of chromosome bands 1p32, 8p11, 12p13, 20p13, and 20q11, the chimeras ETV6::LEXM and NCOA6::ETV6, and imbalances on chromosomes 2, 8, 11, 12, 16, 19, X, and Y. CONCLUSION The leukemic cells from both MPAL patients carried chromosome aberrations resulting in fusion genes as well as genomic imbalances resulting in gain and losses of many gene loci. The detected fusion genes probably represent the main leukemogenic events, although the gains and losses are also likely to play a role in leukemogenesis.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Maren Randi Tandsæther
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Panagopoulos I, Andersen K, Wik HS, Tandsæther MR, Micci F, Heim S. Acute Undifferentiated Leukemia With a Balanced t(5;10)(q35;p12) Resulting in Fusion of HNRNPH1 With MLLT10. Cancer Genomics Proteomics 2023; 20:354-362. [PMID: 37400142 PMCID: PMC10320562 DOI: 10.21873/cgp.20387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND/AIM Acute undifferentiated leukemia (AUL) is leukemia which does not express lineage-specific antigens. Such cases are rare, accounting for 2.7% of all acute leukemia. The reported genetic information of AULs is limited to less than 100 cases with abnormal karyotypes and a few cases carrying chimeric genes or point mutation of a gene. We herein present the genetic findings and clinical features of a case of AUL. CASE REPORT Bone marrow cells obtained at diagnosis from a 31-year-old patient with AUL were genetically investigated. G-Banding karyotyping revealed an abnormal karyotype: 45,X,-Y,t(5;10)(q35;p12),del(12)(p13)[12]/46,XY[5]. Array comparative genomic hybridization examination confirmed the del(12)(p13) seen by G-banding but also detected additional losses from 1q, 17q, Xp, and Xq corresponding to the deletion of approximately 150 genes from these five chromosome arms. RNA sequencing detected six HNRNPH1::MLLT10 and four MLLT10::HNRNPH1 chimeric transcripts, later confirmed by reverse-transcription polymerase chain reaction together with Sanger sequencing. Fluorescence in situ hybridization analysis showed the presence of HNRNPH1::MLLT10 and MLLT10::HNRNPH1 chimeric genes. CONCLUSION To the best of our knowledge, this is the first AUL in which a balanced t(5;10)(q35;p12) leading to fusion of HNRNPH1 with MLLT10 has been detected. The relative leukemogenic importance of the chimeras and gene losses cannot be reliably assessed, but both mechanisms were probably important in the development of AUL.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Hilde Skuterud Wik
- Department of Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Maren Randi Tandsæther
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Panagopoulos I, Andersen K, Rinvoll Johannsdottir IM, Micci F, Heim S. Novel MYCBP::EHD2 and RUNX1::ZNF780A Fusion Genes in T-cell Acute Lymphoblastic Leukemia. Cancer Genomics Proteomics 2023; 20:51-63. [PMID: 36581344 PMCID: PMC9806666 DOI: 10.21873/cgp.20364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIM T-cell acute lymphoblastic leukemia (T-ALL) is a rare malignancy characterized by proliferation of early T-cell precursors that replace normal hematopoietic cells. T-ALL cells carry non-random chromosome aberrations, fusion genes, and gene mutations, often of prognostic significance. We herein report the genetic findings in cells from a T-ALL patient. MATERIALS AND METHODS Bone marrow cells from a patient with T-ALL were examined using G-banding, array comparative genomic hybridization (aCGH), RNA sequencing, reverse transcription polymerase chain reaction (RT-PCR), Sanger sequencing, and fluorescence in situ hybridization. RESULTS G-banding revealed del(1)(p34), add(5)(q14), trisomy 8, and monosomy 21 in the leukemic cells. aCGH detected the gross unbalances inferred from the karyotyping results, except that heterozygous loss of chromosome 21 did not include its distal part; 21q22.12-q22.3 was undeleted. In addition, aCGH detected a submicroscopic interstitial 7.56 Mbp deletion in the q arm of chromosome 19 from 19q13.2 to 19q13.33. RNA sequencing detected and RT-PCR/Sanger sequencing confirmed the presence of two novel chimeras, MYCBP::EHD2 and RUNX1::ZNF780A. They were generated from rearrangements involving subbands 1p34.3 (MYCBP), 19q13.2 (ZNF780A), 19q13.33 (EHD2), and 21q22.12 (RUNX1), i.e., at the breakpoints of chromosomal deletions. CONCLUSION The leukemic cells showed the heterozygous loss of many genes as well as the generation of MYCBP::EHD2 and RUNX1::ZNF780A chimeras. Because the partner genes in the chimeras were found at the breakpoints of the chromosomal deletions, we believe that both the heterozygous losses and the generation of the two chimeras occurred simultaneously, and that they were pathogenetically important.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Shin WY, Kim JA, Yoon SY, Bang HI, Won JH, Song HH, Kim J, Park R. Co-existence of a novel translocation t(11;22)(q23;q12.1) with PML-RARA in acute promyelocytic leukemia: a case report. Ann Hematol 2022; 101:2369-2371. [PMID: 35780252 DOI: 10.1007/s00277-022-04911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/25/2022]
MESH Headings
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein
- Translocation, Genetic
Collapse
Affiliation(s)
- Woo Yong Shin
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesaqwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Jung-Ah Kim
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesaqwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Seug Yun Yoon
- Division of Hematology and Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hae In Bang
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesaqwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| | - Jong-Ho Won
- Division of Hematology and Oncology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Ho Hyun Song
- Department of Interdisciplinary Program in Biomedical Science, Graduate School, Soonchunhyang University, Asan, Chungcheongnam-do, Republic of Korea
| | - Jieun Kim
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesaqwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea.
| | - Rojin Park
- Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, 59 Daesaqwan-ro, Yongsan-gu, Seoul, 04401, Republic of Korea
| |
Collapse
|
5
|
Hehir-Kwa JY, Koudijs MJ, Verwiel ETP, Kester LA, van Tuil M, Strengman E, Buijs A, Kranendonk MEG, Hiemcke-Jiwa LS, de Haas V, van de Geer E, de Leng W, van der Lugt J, Lijnzaad P, Holstege FCP, Kemmeren P, Tops BBJ. Improved Gene Fusion Detection in Childhood Cancer Diagnostics Using RNA Sequencing. JCO Precis Oncol 2022; 6:e2000504. [PMID: 35085008 PMCID: PMC8830514 DOI: 10.1200/po.20.00504] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Gene fusions play a significant role in cancer etiology, making their detection crucial for accurate diagnosis, prognosis, and determining therapeutic targets. Current diagnostic methods largely focus on either targeted or low-resolution genome-wide techniques, which may be unable to capture rare events or both fusion partners. We investigate if RNA sequencing can overcome current limitations with traditional diagnostic techniques to identify gene fusion events. METHODS We first performed RNA sequencing on a validation cohort of 24 samples with a known gene fusion event, after which a prospective pan-pediatric cancer cohort (n = 244) was tested by RNA sequencing in parallel to existing diagnostic procedures. This cohort included hematologic malignancies, tumors of the CNS, solid tumors, and suspected neoplastic samples. All samples were processed in the routine diagnostic workflow and analyzed for gene fusions using standard-of-care methods and RNA sequencing. RESULTS We identified a clinically relevant gene fusion in 83 of 244 cases in the prospective cohort. Sixty fusions were detected by both routine diagnostic techniques and RNA sequencing, and one fusion was detected only in routine diagnostics, but an additional 24 fusions were detected solely by RNA sequencing. RNA sequencing, therefore, increased the diagnostic yield by 38%-39%. In addition, RNA sequencing identified both gene partners involved in the gene fusion, in contrast to most routine techniques. For two patients, the newly identified fusion by RNA sequencing resulted in treatment with targeted agents. CONCLUSION We show that RNA sequencing is sufficiently robust for gene fusion detection in routine diagnostics of childhood cancers and can make a difference in treatment decisions.
Collapse
Affiliation(s)
| | - Marco J. Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Laboratories, Pharmacy and Biomedical Genetics, Section of Genome Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Lennart A. Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marc van Tuil
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Eric Strengman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Arjan Buijs
- Department of Laboratories, Pharmacy and Biomedical Genetics, Section of Genome Diagnostics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | - Valerie de Haas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Wendy de Leng
- Department of Laboratories, Pharmacy and Biomedical Genetics, Section Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | |
Collapse
|